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ABSTRACT

Exlsting theoretlical descriptions of the optical
properties of metals fail to explain measured characteristics
particularly at short wave lengths and at low temperatures.
Thils failure may be attributed to incorrect interpretation
of the physical mechanism responsible for optical and infrared
dispersion. A comprehensive theory based on a perturbation
treatment of bulk electron-phonon processes 1is presented here.
The central feature of the theory 1s the derivation of the
quantum correctlon factor which, when multiplied by the d.c.
damping coefficlent, gives the frequency-dependent damping
coefficlent. The theory 1s then combined with the already
exlstling theorles of Umklapp and impurity scattering processes.
The theory successfully accounts for the optical properties of
metals 1n the entire free electron region at all temperatures
of practical interest.

Detailed calculatlons are presented for monovalant metals
and some polyvalant metals for which assumption of a symmetric
Ferml surface is valid. Polyvalint and transition metals for
which interband transitions are important and the Fermi surface
1s not spherical are also considered. In all more than a
dozen metals for which reliable experimental data are available
have been successfully treated.

Calculations of the absorption properties of super-
conducting metals are also presented in an attempt to determine
the extent to which bulk electron-phonon processes are
responsible for infrared absorption by super-conductors.

Qethur D Little, Ine.
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Typical wavefunctions of metals showing the inner core and
the outer flat region. The distances representing the size of
unit cell are also indlicated. The flatness of wavefunctions

enable us to use the free electron approximation.

Flgure 2-e-eeom e oo (86)
(2) The experimental curves of the specific heat Cp 1s compared
with that of the resistivity £ . It is shown that Cp and

(ﬂ//T) have practically the same temperature-dependence.

(b) It is shown that the Gruneisen's formula for the temperature-
dependence of resistivity agrees excellently with the heat

capacity curve: Gruneisen (1928).

~

The quantum correction factor EQF applicable at short wave-

lengths is plotted as function of temperature T and Debye

temperature @D .

Flgure lj-—=meemmom oo (131)

The A-dependence of the free-electron part of the optical




constants n and k 1s illustrated qualitatively.

Flgure Se-cemcam o (131)
The absorptivity A and reflectivity R due to the free
electrons are illustrated qualitatively as to thelr dependence

on A,

F1gUre B=-ee e eeee (131)
The scattering cross-section Oy per electron and the
virtual mass of a light quantum in the metal, Mp, are
illustrated qualitatively as to their dependence on A. A
compafison of these curves with those of Figure 5 shows that T,

M. resemble A and R, respectively.

Theoretical and experimental curves of O~ and (1- €) for
silver.
Flgure 8-cemcmm oo (170)
Theoretical and experimental curves of n and k for gold.
According to the theory, k 1s a straight line and n is a parabola

in thelr dependence on A. There is no Umklapp contribution present.

The refractive index n of gold is plotted as a function x2.

Qrethur 2 Little, Inr.
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Flgure 10=—emem oo (170)
The optlical constants n and k of copper are plotted against

A. There exists practically no Umklapp contribution.

Figure l1leeece o= (170)
The refractive index n of copper vs. XZ.

Flgure 12--ceccmam o (170)
Theoretical and experimental curves of o and (1-Z) for

copper are plotted agalnst A.

Filgure 13-eecmmemcc e ccc e (170)
Theoretlcal and experimental curves of O- and (1-€) of

(o}
aluminum at 295 K.

Filgure 1lh-—--cemem o (170)
Theoretical and experimental curves of O° and (1-€) for

o]
aluminum at 78 K.

Flgure 15-----mececmccr e cc e e (170)
Theoretical and experimental curves of n and k for

(]
aluminum at 295 K.

Filgure 16-ceec oo (170)

Theoretical and experimental curves of n for aluminum vs.
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[+
A~ at 295 K. The contribution by the Umklapp processes 1is

indicated.

Flgure 17-=em oo oo oo (170)
Theoretical and experimental curves of k for aluminum vs.

L¢]
A at 78 K.

Figure 18--mmmm oo (170)
Theoretical and experimental curves of n for aluminum

[+
at 78 K is plotted against xz. The Umklapp contribution is
indicated.

Flgure 19-c—ccm oo e (170)

Theoretical and experimental curves of O~ and (1-€)

or gallium at room temperature.

Flgure 2l-=—mmmm oo (170)
Theoretical and experimental curves of O and (1-€)

for zinc at room temperature.

Flgure 22-«———m oo (170)
The theoretical and experimental curves of O and (1-€)
for nickel at room temperature. The theoretical curves pro-

vided by the classical Drude theory ( Beattie and Conn, 1955 )
are also shown by the broken lines.
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Flgure 23-ee--cemmmccmc e (170)
Theoretical and experimental curves of O~ and (1-€) for

platinum at room temperature.

Filgure 2--c-emmmem e (170)
Theoretical and experimental curves of o~ and (1-€) for

iridium at room temperature.

Flgure 25---m--cccmmm e (170)
Theoretical absorptivities of aluminum for different

|
temperatures are plotted agalnst (33) in the short wave-

length region.

Flgure 26-~-ececcccmccccc e ————— (170)
Theoretical absorptivities of aluminum at short wave-

lengths are plotted as functions of temperature.

Flgure 27-=-m=—memmecmce e ———— (170)
Theoretical values of the refractive index n for

aluminum at different temperatures.

Figure 28-=cccmmmmcccecc e 070)
Theoretical and experimental curves of reflectivity for

the liquid metals, mercury and gallium, are compared. The




-1x~

theoretical curves do not include the Umklapp contributions.

Flgure 29-m=e-emmm e e (170)
Theoretical and experimental curves of reflectivity for
platinum at room temperature. The magnitude of the Umklapp

contribution is also shown.

Filgure 30-ammmmoc e o (170)
Theoretical and experimental curves of reflectivity for
tltanium at room temperature. The Umklapp contribution is

also shown.

Figure 3l--=--emmmmeo oo (170)
Theoretical ( both with and without consideration of the

Umklapp processes ) and experimental curves of reflectivity

for 1iridium at room temperature.

Flgure 32--—--—mem e (170)
The experimental curves of ¢ and (1- € ) for bismuth
obtained by Markov and Khaikin (1960). The curves exhibit
highly anomalous features. This is presented as an example
of the metal for which theory, both the present and the existing,
falls completely.
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Flgure 33=-mmcmme—o e e (170)
The density-of-states functlons at the 3d- and ls- states
of nickel and copper are illustrated schematically. The

qualltative difference between the two metals 1s quite clear.

Flgure 3l—--mcmce e (170)
Theoretical bulk absorptivities of noble and transition
metals near the absolute zero of temperature are shown
qualitatively. The classlcal theory gives zero absorptivi
regardless of the wavelength. When lmpurity contribution is
present, the curves are to be dlsplaced upward so that the

absorptivity retains a nonzero value at w=0.

Filgure 35-emmmecmcccc e (170)
A schematic 1llustraticn of the density-of-states function
for a super-conducting metal as offered by the theory of

Bardeen, Cooper, and Schrieffer (1957).

Flgure 36--cmcmc oo (170)

The super-conducting energy gap as a function of temperature.

¢]
The maximum value Eg(O) is achileved at 0O K.

Figure 37=—=—cecmmmmmccc e e e (170)
The ratlio of the absorptivity of the super-conducting (AS)

over non super-conducting (AN) aluminum is plotted according to
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the formula offered by Schrieffer (1960). The formula is
applicable in the spectral range, lZ,E‘3< Aw < Eg .

Flgure 38 ce—emmm oo (170)
The absorption edge of lead and tin as observed by
Richards and Tinkham (1960). The theoretical curve of Mattis
and Bardeen (1958) is also shown.
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Chapter 1

Introduction

The interactions of metals with an external electromag-
netic field manifest themselves in different forms depending
on the different spectral ranges that are involved. Two
particular examples may be cited, the d.c. electrical proper-
ties which we observe by applying a static electric field,

i.e. the zero-frequency limit and the optical and infrared
dispersion characteristics which are observed by means of
proper optical apparatus where the frequency spectrum extends
from the far infrared to the ultraviolet.

The present work is concerned with the normal dispersion
characteristics in the optical and infrared range of the spec-
trum and the manner in which these properties are related to
the d.c. electrical properties and other lattice parameters
of metals. Inasmuch as we are concerned with normal dispersion
in contrast to anomalous dispersion, the frequency spectrum
that is involved in the present work must be sufficiently re-
moved from the anomalous region in which photoelectric rego-
nénces of bound electrons become important. Most of the metals
that have been studied are found to have their lowest resonances
in the wavelength region, 0.3 ~ 1.0 micron, and normal dispersion

is observed for wavelengths longer than these values.

Qrethur M. Little, Inc,
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According to the free electron theory of metals, the free,
valence-electrons are responsible for the normal dispersion of
optical and infrared waves as well as for electrical conduction.

Ever since the discovery of electrons and Sommerfeld's suc-
cessful explanation of the phenomenon of thermionic emission
based on the free electron picture of metals and on the Thomas-
Dirac statistics, it has been a popular notion that both optic-
al dispersion properties and electrical properties may be ex-
plained on a common theoretical basis and that these two as-
pects of metallic properties are inter-related in a rather
simple manner. Granted that the simple free electron descrip-
tion of metals is valid, such a notion finds justification in
that both the optical dispersion and d.c. electrical properties
are described by the equation of motion of the conduction elec-
trons subject to the general description in terms of Maxwell's
equations, the difference between the two aspects of metallic
properties arising solely from the different spectral ranges
that are involved.

Therefore, it may be expected that various frequency-
dependent optical quantities such as the optical conductivity
o(w) and the dielectric constant €(w) which describe the optical
dispersion properties, should aléo describe the d.c. electrical
properties such as the d.c. electrical conductivity’t:r(D and di-
electric constant €° when we take the limit w - 0 in various
dispersion equations. On the other hand, the temperature-
dependence of various optical quantities may be predicted from

the more widely studied electrical properties.
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Along with the development of quantum mechanics and quan-
tum statistics, much progress has been made on the theory of
electrical conduction in metals during the past fifty years,
and current theory is successful in explaining the observed
electrical conduction phenomena both qualitatively and quan-
titatively in most of the noble and alkali metals, and quali-
tatively in the transition metals. Modern physics is suc-
cessful in explaining qualitatively some of the salient
features found in alloys, e.g. Matthiessen's rule, dependence
of resistivity on the relative concentrations of the constitu-
ent metal atoms in a random alloy, some unusual properties of
the transition metal alloys, etc. Compared with what has been
done on the electrical properties of metals, surprisingly
little progress has been made on the theory of optical and
infrared dispersion in metals. In fact,'there is no satis-
factory theory available that can predict the dispersion
properties in the entire free electron part of the spectrum
of even the noble and alkaline metals. Existing theories
enjoy a limited success in various segments of the spectrum.
However, the less said the better with regard to the tran-
sition metals and alloys. This is surprising for theoretical-
ly, a description of optical and infrared dispersion proper-
ties is expected to be very much like that of electrical
properties, at least to the extent that both involve free

conduction electrons, and differ from each other only in the

Arthur D Little, Inr.
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extra frequency-dependence appearing in the optical quan-
tities.

Theoretical discussions on the behavior of metallic
conductors under the influence of electromagnetic waves
were first given by Hagen and Rubens on the basis of the
classical Maxwell theory of electrodynamics, and later by
Drude on the basis of the free electron description of
metals and Maxwell ‘s theory. Drude's theory applies to a
wider range of the spectrum than the Hagen-Rubens theory,
and the two theories are identical at the longer wavelengths
where the optical conductivityoc(w) can be replaced by the
d.c. conductivity o(0).

The limitations that are inherent in these theories
have been pointed out in a number of references upon com-
parison with experimental data. In general, the theories
fail in the higher frequency region of the spectrum (i.e.,
hszKT) and also at low temperatures. The Drude theory
has found a qualitative success in a variety of metals in
that it offers a good fit to the experimental dispersion
curves, and yet fails quantitatively in that the d.c. con-
ductivity predicted by the best-fit theoretical curves is
always smaller than the measured values. The exceptions
are some liquid metals such as mercury and gallium. In
any case, the theory fails completely at low temperatures.

Despite these limitations, the classical free electron
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theory of Drude has remained the most successful of the
existing theories in the sense that it presents all as-
pects of dispersion properties in a rather self-contained
manner, especially when combined with the Kramers-Kronig
relation. Although there have been some attempts made to
improve the Drude theory so that it would be applicable to
a wider range of the spectrum and to extend it to multi-
valent and transition metals, they fail to remove the limit-
ations that are inherent in the original Drude theory since
these attempts were not made through a rigorous theoretical
formulation but rather by introducing additional unknown
parameters.

According to the classical theory, the optical absorp-
tivity (= emissivity) of a pure metal vanishes at very low

temperatures in contrast to experimental observations, and

(Restwiderstand) only if a substantial amount of impurities

is present. Although the theory of anomalous skin effect
(i.e., anomalous in the sense that the distance traveled by

an electron between collisions is larger than the skin depth,
l=v§r>'5s) proposed by Reuter and Sondheimer and later elabor-
ated by Dingle has succeeded in explaining a part of the ob-
served absorption at low temperatures, the gap between the
theoretical and experimental values still remains to be ac-
counted for and amounts to anywhere between 50% ~ 80% of the

measured values of the total absorptivity.

Arethur N ALittle Jur.
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Practically all of the existing guantum mechanical
theories of optical and infrared absorption in metals have
been developed since 1954, and were designed to remedy the
gap between the classical theoretical values and the observed
values of the absorptivity in the near infrared and at low
temperatures. However, none of these theories show attempts
to formulate different aspects of the optical and infrared
dispersion properties in such a self-contained form as is
possible in the classical Drude theory. They are confined
to derivations of absorptivity as a function of temperature
and wavelength in a particular segment of the infrared
spectrum. The most outstanding of these theories are those
of Holstein, and those developed more recently by Gurzhi and
Silin of Russia. It was Holstein who originally suggested
that, unlike what is predicted by the theory of anomalous
skin effects, a bulk absorption process in which an elec-
tron absorbs a photon near the surface and then diffuses
into the bulk interior of the lattice emitting a phonon to
conserve energy and momentum, may play a significant role
at low temperatures. Holstein calculated absorptivity in the
near infrared region (A~ 1ln), and the results were already
sufficient to prove that, at low temperatures too, the bulk
electron-phonon collisions are not less important than the
skin effects of Reuter, Sondheimer and Dingle. More recently,

Gurzhi made an attempt to formulate the total absorptivity
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including both the skin effects and the Holstein's bulk mech-
anism to be applicable to a wider range of spectrum than what
is defined by fw >> K8 >> KT. Gurzhi's result was, at least, in
its form more general than that of Holstein's formulae, and will
be shown to agree identically with the absorptivity derived in
the present work in the limit, fw >> KO,KT. Following the
semi-classical calculations by Silin of the contribution by
the electron-electron collisions to the absorptivity based on
the Fermi-liquid theory of Landau, Gurzhi improved Silin's
method by use of a more rigorous Fermi-liquid theory. He
pointed out that the electron-electron collisions may be
significant at high frequency and at low temperature, and
subsequently incorporated these into his previously obtained
formula for the total optical absorptivity. The theoretical
method used by Gurzhi is essentially that of obtaining pertur-
bation solutions to the kinetic equation for the electron dis-—
tribution functions taking into account various collision terms.
This is very much like what was done by Wilson in his calcul-
ations of various d.c. electrical properties. Holstein used

a straightforward quantum mechanical perturbation theory and
calculated various transition matrix elements using a semi-
classical form of electromagnetic perturbation. There are, of
course, other sophisticated theoretical techniques available
for calculating the optical properties of metals such as the

method of temperature-dependent Green's functions developed

Qethur D Little, Juc,
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by Martin and Schwinger and independently by Kogan, and
also the S-matrix formulation which was used by Gurevich

and Uritskii in their theory of infrared absorption in
crystals, mainly for semi-conductors, in the presence of
external magnetic field and in the photoelectric region.
However, the remarkable success found in the results ob-
tained by Holstein and Gurzhi in the high frequency region,
and also in the results obtained in the present work for a
wider range of spectrum attest to the fact that a straight-
forward quantum mechanical perturbation theory is satisfac-
tory for both qualitative and quantitative calculations of
the optical properties, at least in the free-electron region
of the spectrum. On the other hand, a quantitative calcul-
ation of optical properties in the resonance region (i.e.,
for A S 1lp for many metals) can be offered when the general
results obtained on photoelectric absorption in crystals
such as that by Gurevich and Uritskii, are extended to in-
clude the resonance absorption in metals.

The main body of the present work consists of calcul-
ations of various optical and infrared dispersion and elec-
trical properties as well as other related lattice para-
meters based on Holstein's bulk mechanism. In this sense,
the theory by Gurzhi is the closest to the present work inas-
much as it is also based on the same mechanism for electron-

phonon processes. Although Gurzhi's formula for absorptivity
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agrees with the present theory identically in the near infra-
red where fiw > K@, KT, there are some important differences
between the two, and the shortcomings of Gurzhi's theory will
be explained.
A theory may be judged on the basis of the following

obvious set of criteria:

~a) It has to provide a good fit in frequency-dependence
to the optically observed curves for various optical quantities;

b) The theory when best fitted to the optical curves
should reproduce various d.c. electrical and lattice para-
meters in satisfactory agreement with the measured values;

c) 1In order to satisfy the correspondence requirement
in the classical region, the theory should produce success -
fully the well known and time-tested classical formulae for
various dispersion properties in the classical case of small
4@ or high temperature; and

d) As another requirement of the correspondence it should
be able to reproduce the well known temperature-dependence of
various d.c. electrical and some thermodynamic properties in
the limit of zero frequency or infinite wavelength.

None of the existing quantum mechanical theories succeed

in satisfactorily meeting all four of these criteria. Some

Qrthur 0. %Little Inc.
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salient features of the present theory shall be summarized
itematically, and it is expected that this will also serve

rison between the present theory and the existing

In the present theory the gquantum mechanical correc~
tions to the classical dispersion formulae are mostly re-
vealed in the frequency- and temperature-dependence in the
over-all damping coefficient T(w,T). IMw,T) differs signi-
ficantly from the corresponding d.c. value PO(T), which is
the one used in the classical Drude and Hagen-Rubens theories,
only in the spectral and temperature ranges where the quan-
tum effects are important. This is conveniently represented

by introducing the relation

(®,T) = b@, )T (T) 1-(1)

where the b-factor is particularly important in the quantum
mechanical region of high frequency and low temperature.

Agide from the appearance of the b-factor, the present theory
offers various optical and infrareé dispersion formulae which
bear very close resemblance to the well known classical
formulae . Thus, it is clear that establishing the frequency-
and temperature dependences of I' or b will occupy the heart

of the present theory. Results for non-transition metals ap-
ply mostly to those metals which have ~ TS-dependence on

temperature of the electron-phonon part of the resistivity at
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low temperature. The transition metals are shown to exhibit,
in temperature- and frequency dependences, properties distinct
from those of non-transition metals. The ferromagnetic and
paramagnetic transition metals are investigated independently.
It is found that the electron-phonon part of the dispersion
formulae for transition metals for which the number of s-
electrons is completely compensated by the number of empty
states (positive holes) in the d-band, leads to~ T° -depend-
ence of d.c. resistivity, while the formulae for those tran-
sition metals in which the total number of S-electrons are
not sufficient to close the d-band, lead to a negative ex-
ponential temperature-dependence at very low temperatures.
There are further differences in temperature-dependences
between ferromagnetic and paramaghetic transition metals
which are offered by the theories of Weiss and, at low
temperatures, of Heisenberg.

Generally, the over-all damping coefficient I'(w,T) is
a sum of the contributions by the electron-phonon collisions,
electron-electron collisions, and the impurity scattering

such that
MW, T) = rep(w,,'r) +ree(w,T) + Ty (T) I-(2)

where the subscripts (ep), (ee) and (M) represent the three
processes in the order mentioned above, and where the quantum
correction factors, bep(w,T) and bee(w,T), may be defined for

the first two processes in such a way that

Arthur A Little Inc.
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Pep = Toep(T)bep(m,T)
ee 1-‘oee(lll)bee((b’T) I-(3)
T T T
_ oep oee M
b(w,T) = ( T bep(a),T) + T bee(w,T) + ro>

Among the three processes only the electron-phonon process is
important at ordinary temperatures and in the free-electron
region of the spectrum provided that the metal sample is a
reasonably pure one. Many studies have been made on the coitri-
butions of the electron-electron collisions and the impurity
scattering to optical and infrared absorption in metals.
Among the latest developments, the most prominent are the
works of Pitaevskii, Silin and Gurzhi. According to these
authors, the electron-electron collisions may contribute sig-
nificantly either at very low temperatures or in the high
frequency limit of the infrared spectrum, while the impurity
scatterings are important at very low temperatures even for
a reasonably clean sample. In particular, Gurzhi has derived
a frequency-dependent electron-electron damping coefficient
Fee(w,T) as well as a general formula for the impurity con-
tribution to the damping.

In the present work, a variety of metals, all of which
are supposed to be of very small impurity content, have been
investigated as to the relative importance of the three mech-

anisms of damping in the high frequency region and also at low
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temperatures. As the result of this investigation it is
found that although the suggestion of Pitaevskii, Silin
and Gurzhi may apply to some special cases of transition
metals, it does not strictly apply to other metals in most
of the quantum mechanical region of the free electron spec-
trum. In fact, the electron-phonon process or the Holstein
mechanism alone, in the form that is derived in the present
theory, explains quite successfully (viz., up to 2 ~ 5%) the
low temperature (4.2°K) near infrared (1~1.5u) absorptivity
of all the metals for which experimental data are available.
The calculations on transition metals in the present
theory suggest that the electron-electron collisions and im-
purity scatterings are particularly important for those tran-
sition metals, and similarly for other multivalent non-
transition metals, in which the interband transitions
require a non-zero momentum transfer. For a transition
metal of this kind, only the phonons of energy larger than
a certain non-zero value are effective in the transitions,
and as the result of this the electron-phonon part of the
low temperature resistivity has the previously mentioned
negative exponential nature. This applies to all the tran-
sition metals whose S-electrons are not sufficient to close
the d-band, and the low temperature resistivity is due mostly
to the electron-electron collisions with the well known T2-

dependence on temperature as well as to the temperature-

Arthur D.Little, Ine,
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independent impurity scatterings (Restwiderstand). On the
other hand, for those transition metals whose S-electrons
are exactly compensated by the positive holes in the d-band
such as the triad, Pt, Ni and Pd, the T’-dependence of the
electron-phonon part plus the T¢-dependence of the electron-
electron collision term define the temperature-dependence of
the low temperature resistivity to the extent of neglecting
an additional q"-dependence in the electron-phonon part.
This is partly in contrast to the earlier concept that the
electron-electron collisions make predominant contributions
at low temperatures for all transition metals.

Strictly speaking, the TZ-dependence is predominant in
the transition metals other than the triad at temperatures
smaller than the value given by

ﬁUL lkd B ksl

< °
- . I-(4
@E X .glOK (4)

which is also the lower limit in the summation over the
phonon states, where kd’ ks are the Fermi momenta for the
d- and s-bands, UL is the longitudinal phase speed of sound
and K is the Boltzman constant.

All the optical dispersion quantities including the op-
tical conductivity o(®,T), the optical dielectric constant

€(w,T), and absorptivity A(®,T) that are calculated in the

present theory show not only good fit to the corresponding
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experimental curves throughout the entire free-electron
infrared spectrum, but also reproduce various d.c. elec-
trical properties in excellent agreement with the directly
measured values for a number of non-transition and tran-
sition metals. They also reproduce exactly the well known
temperature-dependences of the d.c. electrical properties
(hence, also of heat capacity and thermal conductivity)
such as the famous Grineisen formula G(%) for non-transition
metals. The Grﬂneisen formula has long been known to des-
cribe temperature-dependence in excellent agreement with
observations for T not toomuch larger than @.

It is pointed out, as the resu;t of the present theory,
that the quantum corrections represented by b(w,T)-factor
can also be significant in a relatively long wavelength
region of the infrared, when fw=~ KT. This is clearly illus-
trated in the formula for the reflectivity,

R(w,T)=1 - ZJ-::::EZ:—-:I
210

d.c.(T)

%

[b(w, T)] I-(5)

which applies to the Hagen-Rubens limit of the spectrum or
when »® << I'®’, where the b-factor, although close to unity in
this spectral range, is usually different from unity by a
small fraction, and becomes essentially equal to unity when
fw << KT in which case the formula is identically the well

known and time-tested Hagen-Rubens formula. In this sense,

Arthur D Little Inc.
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Formula (5) may be called the generalized Hagen-Rubens
formula.

The present theory also enables us to estimate such
lattice parameters as the electron density, the effective
mass values of optical electrons, the Fermi energy, the
upper edge of the d-band in a transition metal, and longi-
tudinal phase speed of sound, etc. The heat capacity and
thermal conduction properties also follow as by-products
of the present theory. The impurity content can be esti-
mated from low temperature optical data even for a sample
with such a small impurity content as to be undetectable
at ordinary temperatures.

The calculations for absorptivity at very low tempera-
tures include both normal and superconducting metals. For
the superconducting metals or below the superconducting
transition temperature, the calculations are assisted by
the theory of superconductivity of Bardeen, Cooper and
Schrieffer. That Holstein's bulk absorption process might
be important in a superconductor was suggested recently by
Richards and Tinkham. The calculations in the present work
are intended as a check on the said suggestion and to see
whether the existing gap between the experimental absorptiv-
ity and the predictions of Mattis and Bardeen can be ex-
plained by Holstein's mechanism. It may be noted that the

absorptivity for light quanta, fw, smaller than the energy
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gap (at T OOK) has been given by Schrieffer and has been
shown to agree well with experiments. At the present no
definite conclusion can bé provided on the basis of the
present calculations because of insufficient experimental
data. |

Finally, some words need to be said regarding possible
limitations in the present theory. The limitations may
result mainly from two causes: firstly, the use of the simple
Debye model and secondly, the assumption of spherical Fermi
surfaces.

The first éssumption leads to difficulties at very
high temperatures (T » ® ) where the Umklapp process is
important. The same difficulty is found in Gruneisen's
formula for d.c. reSlSthlty at very high temperatures.

Another less serious aspect of limitations in the
use of the Debye model is in neglecting the anisotropy
among the longitudinal and two transverse directions, whereas
in more accurate calculations,‘one needs to consider threev
componehts of the phase velocity of sound as well as three
characteristic témperatures instead of the Debye temperature
alone. This problem of lattice anisotropy is of no concern

for a polycrystalline metal sample. Perhaps the best

Arthur D Little, Ine.
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justification for using the simple Debye model is in the
good agreement found between the theoretical and experi-
mental values of heat capacity

It is well known that the Umklapp processes are impor-
tant at very low temperatures, especially for those metals
in which the interband transitions are important. At very
low temperatures, the Umklapp processes enter into various
physical quantities through electron-electron collisdion
terms and do not enter into the electron-phonon processes,
since the angular deflection involved in an electron-phonon
scattering is in the order of @) which is certainly much
less thqn unity. It is known ﬁhat contribution by electron-
electroﬁ collisions to the over-all damping coefficient
vanishes when Umklapp processes are not pfesent. In short,
at very low temperatures, the Umklapp processes are impor-
tant to the extent that the electron-electron collisions are
important, and hence are automatically taken into consider-
;tion in the present theory by incorporating the effects of
electron-electron collisions into various dispersion
formulae.

The limitations that are associated with the assumption
of a spherical Fermi surface are well known, and are often
discussed in the literature. ‘In general, this approximation
works well for most monovalent metals such as the noble metals

Ag, Au, and Cu, and also for some multivalent metals for which
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the interband transitions are not important. On the other
hand, the assumption of a spherical Fermi surface is not
strictly valid for those non—tranéition metals in which the
Fermi surface touches or almost touches the plane of energy
discontinuity and for all tranSition metals in which the
interband transitions between the s-and d-bands are most
important. 1In the present theory, the calculations for
non-transition metals are carried out on the basis‘bf a
spherical Fermi surface, while non-spherical Férmi surfaces
have beén used for all transition metals. vThereforea it is
expectea that the results on non-transition metals will not
appiy strictly to some multivalent metals.

The present work does not include detailed study of
the optical and electrical properties of alloys, and also
of such other propertiés of metals as thermoeiectricity and
magneto-resistive effects. Much has yet to be learned
theorétically about the d.c. electrical properties before
it is possible to study rigorously the optical and infrared
dispersion properties of alloys.

An attempt has been made to make this thesis self-
contained, but in view of all the relevant work yet to be
done in the field of interest this was impossible. Similar-
-1y, an honest effort to give all due credit was made, but it
is likely that some work has not been properly cited, such

omissions were not intentional.

Arthur D.Little, Ine.
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Chapter II

Fundamental Relations Between Optical And
Electrical Properties Of Metals

II-A Maxwell's Equations and Kramers-Kronig Relation

Maxwell's theory of electromagnetism provides us with
a set of the most fundamental relations between the optical
properties and the electrical properties of metals. These
relations plus the well known Kramers-Kronig relations
between the real and imaginary parts of the complex polar-
izability constitute a foundation upon which the inter-
pretation of the optical and infrared behavior of metals in
terms of electrical properties is based.

If E and H are the electric and magnetic fields repre-
sented as functions of the coordinate r and time t for a

given angular frequency

o= [2nv sece”t]

Maxwell's equations for an uncharged conductor are given

in c.g.s. units by

_ € _CE ang (w) _
VXE = o %t T E =)

_ b o -
VXE = o 3¢ I1-(2)

V*E = V:H=0 II-(3)
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where ¢(w) is the real dielectric constant, o(w) is the con-
ductivity, and ¢ is the permeability.

At optical and infrared frequencies, p = 1 for all sub-
stances. The magnetic field H is eliminated by combining

Equations (1) and (2) and we obtain

2E d
caV2§_=e aat-e. + ana 5% 11-(4)

The solution to this differential equation is given by the

typical solution to the usual wave equation,

=%
: + ilen? _ s 3
E = g ei0t i(ew ianow) “z/c II-(5)

where E, is the maximum amplitude (i.e., at z= 0, t=0) and
Z measures the penetration distance into the metal. The

solution (5) takes on the conventional form expressed in

terms of the complex index of refraction ﬁ;

; + N £
lw(t_Nc)

E = Ege I1I-(6)
if we identify N with [.. .ﬁo’l of Equation (5):

= AT 4%

N = (n-ik)= [e- i-22% II-(7)

where n and k represent the index of refraction and absorp-
tion coefficient, respectively.
The relation (7) immediately yields the following two

important relations between the electric properties

Jethur D Little Inc.
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[c(w), e(w)] and optical constants (n,k):

S = nkw/&n I1-{9)

These two relations will be referred to frequently.
The physical significance of o{(w) for o> 0 becomes
evident when we calculate the rate of energy loss by com-

puting the Poynting vector S,

S= — (EXH) I1-(10)

and taking the time average of

oS
- = 4
gz

where W is the Joule heat produced per unit time and per
unit volume within the conducting medium. Then, we ob-

tain as the definition of o(w)

— E2
o(®) = W/ 5 II-(11)
which says that ¢ is the fraction of the energy absorbed
or dissipated per unit time and unit volume out of the
energy density per unit volume j;— ., of the electromagnetic
field of frequency w. It is quite obvious then that o(0),

at ®= 0, should be the d.c. conductivity of the metal. It

— e —————— ——r
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is a popular practice to introduce a complex dielectric

constant ¢ and complex polarizabilityd such that

a2

€ =1 +413 = N ITI-(12)
a =a - ig II-(13)
This is analogous to the similar relation for the real
quantities,
€ =1+4T = n2%~- k%:p =1 II-(14)
Then, upon comparing Equations (12) and (13) with
Equation (7), we now have
€ =1+ 4MTX = n2- k2 II-(15)
amy = 2IL o oony II-(16)

w

These two relations enable us to obtain (n,k) values upon
knowing the values of the dielectric constant ¢ and conduc-
tivity cat a given frequency, and, conversely, to obtain €
and 0 values from known values of n and k. In general, the
observati?ns in the optical and infrared part of the spec-
trum are designed to measure the optical constants (n,k) or
other optical properties such as the reflectivity and

emissivity (= absorptivity for metals). Therefore, for

the purpose of predicting (n,k) values for a given frequency

Arthur D Little Inc.
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®w and temperature T (°K) from a known set of values of the
d.c. electric properties €(0) and ¢(0), or for the purpose
of predicting the d.c. electric properties from measured
values of (n,k), we need to have a set of theoretical
equations relating €(w) and o(w) to the corresponding d.c.

gquantities €(0) and 0(0). Specifically, the frequency and

temperature dependence of o(w) and, e¢(w) needs to be specified.

Establishing the correct w- and T-dependence of o and
¢ constitutes a major part of the theoretical work explain-
ing the optical, infrared, and the related electrical proper-
ties of metals. Fortunately, the solution to the theoretical
problem is considerably simplified with the aid of the
Kramers-Kronig relation which represents an integral relation
between o(®) and €(w), or, more properly, between the real

and imaginary parts of the complex polarizability as follows:

[o0]

(0 = - _P_f @' o' (') d' II-(17)

1 2 2

™ (V)

(o]
With the help of Equation (16), this represents a

relationship between ¢€(®) and o(w) given by

[e@)-l] _ dm)’20'(u> ) I1-(18)

Lar (©'2- o2)

Therefore, it is sufficient to specify the w- and T-
dependence of either ocor € for establishing the complete

®=- and T-dependent structure of the optical and electrical
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quantities that are involved in Equations (15) and (16).
In a more general discussion of the Kramers-Kronig
relation, Equations (17) and (18) are equivalently repre-

sented in the form

-+00
Re[W(w) - 1] = —fir—fa.u LnN(w') -] I1-(19)

which may be recognized as the real part of the equation

+%
[N(w) - 1] = —.fTTPfcw [Na()‘f"z ;)l] I1-(20)

or in the limit ofn - 0%

4o
N(w) - 1] = Elr—l—fdm' gf‘%;t‘i}l) I1-(21)

Equation (20), which is the most general representa-

tion of the Kramers-Kronig relation, was observed by

Kramers as a simple consequence of Cauchy's theorem if we

assume that N(®w) is a function of a complex variable ®

analytic in the upper half w-plane which approaches unity

at infinity. ' It was later shown By Kronig that the ab;

sence of poles of ﬁ]w) in the upper half w-plane was both

a necessary and sufficient condition for the property that

no signal may propagate through a medium with index of re-

fraction N{») with a speed greater than that of light.

Aethur D Little, Inc.
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Sometimes, the optical properties of a medium are ex-
pressed in terms of the forward scattering amplitude F(w)
and the total scattering cross-section per scattering center
Us(w) rather than in terms of (o,0) or (n,k).

The equation which shows the relation between the com-
plex forward scattering amplitude F(®) and the complex in-

dex of refraction ﬁkw) was first offered by Lorentz,

namely,

2

(W(w) - 1] = n =— F(w) II-(22)

where ng is the number of scattering centers per unit volume.
The same derivation leading to Equation (22) also yields the

optical theorem
O'S((D) = 4TC Im(ﬂw@)—> II-(23)

where Us(w) is the total cross-section in cm® per scatterer.
The above relation also follows very simply upon noting
that the intensity of a wave propagating through a medium
of refractive index ﬁ]w) is reduced in a distancegby a
factor |expli $ N(w)z]|%?and also by E'nOCS(w)z according

to the definition of Gs(w). Comparison of these two ex-
pressions gives Equation (23).

Upon comparing Equations (22) and (23) with the

relations (12)~ (16), some useful relations follow.
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We have, for instance,

n(w) = ReN(w) = 1 + e Re F(w) II-(24)
_ 2imoc2 _
k(@) = - ImN(®) = - ——=— Im F(w)
n c
= - o Oé(d)) II"’(25)
20

e(w) = Re-N® = (1L+ anct)

2 n
[(l + 2T{ch Re f(m))z- 2rnge? Im-F(m))ZJ I11-(26)

W2

oclw) = - :;r Im-N2 = wo!
noc2 _ 2rtnoc2 _
= = o <Im.F(a>)> (l + > Re.F(a))> II-(27)
. w

where the real and imaginary parts of E(w) are related to

each other through Kramers-Kronig relation

+o0

— w? I F{Ub'}
ReF (©) ES Pf de’ a)'ZHEw'- w)

_ 2w , ImF (®') _

Jethur D Little, Inc.
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In applying the relations (24) ~ (27) to the infrared
dispersion in metals, we need only to remember that n_ is

o]
the effective number of conduction electrons per cm® an

d
that Ué(w) is the total scattering cross-section for the
conduction electron - external photon interactions includ-
ing the absorption, emission, and the scattering in the

ordinary sense.

II-B Absorptivity (Emissivity) and Reflectivity

Various optical, infrared and electrical properties
may be obtained from measurements of the absorptivity (A)
and reflectivity (R), as well as from n and k. The two

quantities are related by the equation,
R=1-2A I1-(29)

The relationship between (R,A) and the electrical
properties will follow naturally from Equations (15) and
(16), when we establish the relationship between (R,A)
and (n,k).

The optical theory gives the well known result that

for normal incidence

=1 - A II-(30)

2| |=|
+
- |-

which defines the reflectivity and absorptivity in terms
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of the complex index of refraction N = n-ik. 1In particular,
for a transparent medium such as glass, we have N = n, and

Equation (30) gives the well known formula
_ n-1 ¥
R = < n+l >
Equation (30) completely determines R and A in terms of n
and k. In order to express R and A in terms of Wand €,
it is convenient to follow the simple algebraic method of
Price (1949) rather than to use Equations (15) and (16).

Upon writing, for the complex polarizability, a
[«0]" = (x + iy) II-(31)

The absorptivity is given by

a2 aZ . o - v _
aR = 8(1-A) =T +(T+ y~) II-(32)
where
T = x +x% +y?
1 - ¢ = 1+k2- 1 = x/x2 + y2
—29 . - onk = -y/x% + y*® I1-(33)

oW

and these are just as well represented in terms of the
real and imaginary parts of scattering amplitudes accord-~

ing to the relations (24)~ (27).

ethur M. Little, Inc.
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The frequency- and temperature-dependence of R and A

will then be determined when the w- and T-dependent struc-

ture of cor ¢ is obtained theoretically. The spectral and

temperature variation of R and A will vary depending on the

choice of the particular theoretical model used in calculat-.

ing the complex polarizability.

In particular, if we adopt

the classical free electron theory of Drude (1904, 1902),

the real and imaginary parts of the complex polarizability

are given by

x =
y =
where
3
t = b
o 4nngye?
f -1
R I‘o
m*
e
n
o}

- (wTR)e

- (ot )Z

the relaxation time of
a conduction electron

the effective mass of
a conduction electron

the electronic charge
=10
(= 4.8X10 7 g.u.)

the effective number

of conduction electrons
per unit volume

Price (1949) presents an extensive investigation on

the qualitative features of the spectral and temperature

II-(34)
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variations of A and R for metals to which one electron dis-
persion theory can be applied in the form of Equation (24).
In general, the expressions for x and y will assume
different forms for different theoretical models. A brief
review on some of the most popular theories on optical and

infrared dispersion is presented in the chapter that follows.

Qethur D Little, Inr.
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Chapter III

Existing Theories on Optical and Infrared Dispersion
in Metals

III-A Hagen-Rubens Theory

Theoretical discussions on the behavior of metallic
conductors under the influence of electromagnetic waves
were first given by Hagen and Rubens (1903) and by Drude
(1904) on the basis of classical electrodynamics.

The Hagen-Rubens theory is restricted in its ap-
plicability to the long wavelength part of the spectrum
where (MR)2 is much smaller than unity, tR being the re-
laxation time characteristic of the damping in the elec-
tronic motion. The results of the Hagen-Rubens theory

follow from Equation II-(8), (9), and (20) upon taking
clw)=0c(0) = ¢ ITII-(1)

d.c.

in the long wavelength part of the spectrum. We thus

nk = <O’d.c,/v> IITI-(2)

It may be shown that Gd c /v> is much larger

have

than unity for the wavelengths for which the approxi-

mation (1) is valid, and hence, approximately
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nk = —{%ﬁh- III-(3)
R = 1-A=~1-2 j_:::;:::i III-(4)

0d.c.

where the latter expression is obtained upon substitut-
ing (3) into II-(20). The formula (4), which is known

as the Hagen-Rubens relation, has been compared with the
experiment for infrared radiation and for various metals
and temperatures (Hagen and Rubens, 1903), and it is in

general in fair agreement with the experiment for
AR 10p

The approximation represented by (1) is equivalent

<
(=3

hase with the applied elec-

Q

tric field E. This will be true only if the relaxation
time tR of the electron is small compared with the period
of the light wave so that the field acting on the electron
is approximately constant during the time taken by an
electron to traverse its mean free path. For wavelengths
shorter than ~10 p, the current will be out of phase with
the field, and it is generally observed that the formula
(3), (4), and (2) are not even approximately in agreement

with the experiment.

QArthur D Little, Inc.
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III-B Drude Theory

A more general theory than that of Hagen and Rubens
was given by Drude (1904) by obtaining the solutions to
the classical equation of motion for free conduction
electrons subject to Maxwell's electromagnetic field.

In contrast to the Lorentz theory (Lorentz 1906) of
absorption by dielectrics, which rests on the assumption
that bound charges become polarized upon interaction with
the electromagnetic wave, Drude (1902, 1904) suggested
that the optical properties of metals could be explained
by consideration of the interaction between the free con-
duction electrons in the metal and electromagnetic wave.
The solution for the conductivity o(w) is obtained upon

solving the equation

m* § + m* T g = -eE ai®t III-(5)
o o)

where s is the electron position coordinate within the
metal, E = E%;imt is the applied electromagnetic field,
and Fo is the damping coefficient which is also equal
to the inverse of the d.c. relaxation time ?R' Using
the effective mass m* in Equation (5) instead of the
normal election mass m which was used in the original
Drude theory (1904), we have incorporated the later de-
veloped effective mass method with the primitive free

electron theory of Drude.
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Equation (5) yields the expressions for the conduc-

tivity o(@) and the dielectric constant e¢(w),

nkw a(0)

o(w) = TN IR E I11-(6)
: - 4na(o)1R
l-e(w)} = 1 + k- n = —mm——— III-(7
(@)} 1+ (ofg)? (7)
where we used the notations,
S |
TR =T
nee2 III-(8)
70 == %
We see that
o) ;7o u{0) IIT-(9)

so that o(0) is the d.c. conductivity.
It can be shown readily that the relations (6) and
(7) reduce to the simple relations (2), (3) and (4) of

the Hagen-Rubens theory in the limit
2
(wt R) <1

On the other hand, the results of the Drude theory
do not apply to that part of the short wavelength region

where the contribution of the bound electrons enter (i.e.,

Qethur 2. %4ittle, Inc.
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the resonance region) through the photo-electric effects.
At the shorter wavelengths, the anomalous dispersion occurs
due to the contributions cf the photo-electric absorption,
and also the core polarization becomes important. In this
part of the spectrum, the simple free electron theory of
Drude is not enough to explain the observed dispersion, and

will be modified, for the dielectric constant, as follows:

2
(e=1)= n2-k3-1 = AR + (e-1) _+ (e-1) III-(10)
- T T m*e? € c - P

where (ec- l)c is the contribution of the core polarization
and (e-l)p of the photoelectric absorption.

In general, the anomalous dispersion is observed at
a wavelength well below ~lp. Ag, Au, and Cu, for instance,
have their lowest resonances at 0.27u, 0.37 p, and 0.50pu
(Meier, 1910), respectively. As long as one stays at wave-
lengths which are long enough to be sufficiently outside
the resonance gail, the free electron theory of Drude should
be satisfactory. At the high frequency region where the

condition
(mR)a» 1

is satisfied, the free electron part of o(w) and e(w) are

given by
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o(w) = cr(O)/(th)z
III-(11)

e-lw = 41mee2/m*a)2

The values of (€-l)c are available for a variety
of metals (Van Vieck, 1959), and are generally inde-
pendent of frequency (Mott and Jones, 1936). The value
of (e—l)p may be found either by a direct theoretical
calculation, or empirically from the observed data of
(n,k) values. The photoelectric part (nk)p of the ob-
served (n,k) values is obtained empirically upon sub-
tracting the free electron part (i.e., the Drude part)
from the observed (n,k) values making use of the
relation (11). Then, (e-l)p is obtained, in turn, upon

making use of the Kramers-Kronig relation II-(18),

(e-1) = Ji-u[ (nk)p ~od o III-(12)

For wavelengths sufficiently outside the photo-
electric region, (e—l)c and (e-l)p are small enough to
be neglected compared with the free electron part. We
shall be primarily interested in this part of the spec-
trum where only the free conduction electrons play a

dominant role.

Jethur A Little, Inc.
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Equations (6) and (7) show that the two Drude

equations are related with each other by a rather simple

ebraic relat

V]
|—l
Vo)

o/l - e = (4nTR)‘1 = PO/4n = nky/1 + k® - n® III-(13)

This relation enables us to obtain the value of the d.c.
damping coefficient TO or the d.c. relaxation time TR
when we have only one pair of (n,k) values at an arbi-
trary frequency, provided that the frequencyw is not
too large.

A more exact way of determining the value of Ty
would be to plot o(®w) against (l-¢) from a set of (n,k)
values, and then determine the slope (Fo/4n) of the re-
sulting straight line. This method was first pointed
out by Wolfe (1954, 1955). Any deviation of the curve
from the Drude straight line would also provide us with
a measure of the validity of the Drude theory at a given
frequency.

Beattie and Conn (1955) plotted the Argand diagrams
showing (2nk/A) against (n®-k2® for Al, Ag, Ni and Cu.
The values of Fo and TR determined from the slopes vary
greatly depending on the way the metal surfaces are pre-
pared. The best agreements of the d.c. conductivity values

% which are obtained upon substituting the Ty values into
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the Drude equation (6), with the electrically measured
values were obtained for evaporated metal films. The
results of Beattie and Conn are presented in Table 1.
The .discrepancy between the measured and calculated
(Drude Theory) values of the d.c. conductivity for
evaporated films of Ag, Cu, Ni and Al are found as 40%,
100%, 40~ 50%, and 40% respectively. The calculated
values are always smaller than the measured values.
These results will be further discussed in a later
chapter, and it will be shown that the mentioned dis-
crepancy can be explained theoretically upon introducing
an additional frequency-dependent factor into the orig-
inal Drude equation.

For none of the metals that were studied by Beattie
and Conn ’‘1955) did the Argand diagrams yield complete
straight lines. For Al, for instance, the curve starts
to deviate from the straight line at ~8u. The deviation
becomes more pronounced toward the shorter wavelengths
as one might have expected. An interesting feature is
that the Argand diagrams start to deviate from a straight
line long before the wavelength enters the photoelectric
resonance tail.

With almost no exception, the d.c. conductivity Uo
calculated according to the Drude Theory from the observed

values of optical constants is always smaller than the

Qethur D Little, Iuc.
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measured value even when very carefully prepared metal
surfaces are used. Thus, it seems that the classical
free electron thecory of Drude contains some basic limit-
ations.

Of all the existing theories on the optical and infra-
red dispersion in metals, the classical free electron
theory of Drude (1904, 1902) has been most successful in
explaining the experimental results aside from some ex-
ceptional cases that will be discussed later.

The Drude Theory has been applied to a large number
of metals with varying degrees of success. An excellent
review by Schulz (1957-a) and the review by Blau et al
(1958) éives a detailed account of this work as well as
references to many of the original papers. The basis for
the relative success of the Drude Theory lies in the fact
that, for a number of metals for which sufficient data on
(n,k) values are available, Equations (6) and (7) can be
fitted to the optically determined curves of o(w) and
[l=c(®w)] upon adjusting rb and o(0) or n, and m* to suit-
able values (Schulz, 1957-a,b,c, 1951, 1954; Beattie and
Conn, 1955; Seitz and Turnbull, 1958 and others).

For Au, Ag and Cu, which have their first resonances
at 0.37u, 0.27u, and 0.54, respectively (Meier, 1910), the
Drude Equations (6) and (7) can be fitted to the experi-

mental curves with m* (Cu) = 1.45m, and m* (Au)= m* (Ag)=m




TABLE

I

II

Metal | 0, X 107%® e.s.u. 04 X 10 ¥ e.s.u. ‘L—H-
(calc) (measured)
Al 11.6 15.0 1.3
. 3.16) (4.6) Gs)
Ni <1.02 1.4 .4
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for \ > 24 (Schulz, 1957-a). The optical behavior of the
three simple monovalent metals is clearly consistent with
the Drude theory at least so far as the frequency depend-
ence is concerned.

Another example of excellent agreement between theory
and experiment is found in the liquid metals Hg and Ga
(Schulz, 1957-b). For these metals, the theory fits well
for A 0.3H.

Except for the case of the liquid metals, the success
of the Drude theory mentioned above is nb more than a quali-
tative one. For the theory to be quantitatively consistent,
the values of the electric properties such as o(0) and ¢(0)
as well as other lattice parameters must agree with the
measured values when calculated from the measured optical
constants. And conversely,
from the measured values of o(0) and ¢(0) should agree with
the measured values of the optical constants. However, in
pPractically all cases that have been studied, the d4.c. con-
ductivity values calculated from the best-fit Drude curves
are found to be smaller than the handbook values, for mono-
valent as well as multivalent metals. Such discrepancies

occur sometimes by a factor of 2~ 10 (see, for instance,

_Seitz and Turnbull, 1958; Beattie and Conn, 1955).

As it was shown by Beattie and Conn (1955), the d.c.

conductivity calculated according to the Drude theory from

Arethur D.Little, Pue.
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the measured values of optical constants depends very

strongly on the manner in which the metal surface is pre-

o)
Q,

ared. The discrepancy was smallest, being cf th

~n e
(%Y ¥ L

9}

f 40~ 100 percent, for the case of evaporated metal films,
while for metals prepared in other ways the calculated d.c.
conductivity values were smaller than the handbook values
by a large factor of 3~ 5. Although the large discrepancies
in the case where the surfaces are prepared by a method
other than by evaporétion may be explained as arising from
the crystal structure of the metal surface being disturbed
during the process of polishing such as introducing an
amorphous layer, the discrepancy for the case of evaporated
films is yet to be explained.  The only cases where both
qualitative and quantitative agreements are found are the
liquid metals Hg and Ga.

In general, the agreement between the theory and ex-
periment for solid, multivalent metals is more incomplete
than for monovalent metals such as gold, silver and copper.
At best, a partial agreement over a narrow spectral region
can be obtained through suitable adjustment of the para-
meters n_, m*, and 0(0). This procedure for multivalent
metal is justified, as will be explained . when
the contribution to o(w) and e¢(w) of one band is predominant -
over the second band contribution in a certain range of the

spectrum in the two-band description of the free electron
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theory. In this range of the spectrum, the metal may be
treated effectively with the one-electron formula of

Drude. By adjusting n, and o(0), Hodgson (1955) was able
to fit measured values of n and k for the divalent metal

Zn from.2 to 15u . The value of n, was substantially lower
than that calculated, and the value of o¢(0) substantially
lower than that measured. For the trivalent metal Al,
Hodgson (1955) and Beattie (1955) could fit the Drude
curves to the optical curves in the spectral range of
l~10p , using suitably reduced values of n, and o(0).

In spite of the good agreement found in the liquid
metals Hg and Ga, it was found (Schulz, 1957-c) that the
liquid alloys Hg-In, Hg-Tl, and Ga-In are in complete dis-
agreement with the theory. This is in contrast to the
earlier studies of Kent (1919) which
liquid alloys follow the Drude theory. But these studies
were confined to a very short wavelength range. Soeme of
the early studies on the optical properties of liquid
metals (Kent, 1919), bismuth,‘lead, cadmium and tin, in
the spectral range of 0.404p to 0.579u shows a remarkable

agreement with the Drude theory as shown in Table III.

Qrthur D Little Juc,
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III-C Electron-Lattice Interaction and Anomalous Skin Effects

In the original theory of Drude (1904), the viscous
damping coefficient Po was used without specific reference
to the physical mechanism giving rise to the damping. The
introduction of Po was necessary in order to maintain a
consistency between the electromagnetic dispersion and the
finite d.c. resistivity on the basis of the free electron
model. In this sense, the damping coefficient was used as
a parameter whose magnitude was to be determined either
from the measured electrical properties or from the measured
optical data. Kronig (1927) reconsidered the problem in
the frame of the modern theory of metals, showing that if
the conduction eléctrons are treated as moving in a peri-
odic potential perturbed by the thermal agitation of the
lattice, they can be held responsible for the optical pro-
perties in the infrared as well as for the characteristic
absorption and refraction in the visible and near ultra-
violet parts of the spectrum. In other words, Kronig at-
tributed the occurrence of finite Ty to the mechanism of
the electron-lattice interaction.

The mechanism of the electron-Lattice interaction oOr
the electron-phonon inteéeraction as it is popularly inter-
preted in modern theory, and of impurity scattering when
the metal contains a substantial amount of impurities, has

shown enormous success in explaining various physical




TABLE

III

LIQUID METALS

Metal

Bi

Pb

Cd

Sn

Hg

Ne/atom
(calculated)

5.1

2.4

2.1

1/0,

(14 ohm/cm)
calculated

128

94

33.4

54

87.3

1/04c
(1 ohm/cm)
measured

134

98

34

52

94
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qualities of metals such as the thermal and electric conduc-~
tion, the Wiedemann-Franz law, the Matthiessen rule, the
dependence of the electric resistance on temperature . and
pressure, and many others. :(See, for instance, Wilson,

1936 and Mott and Jones, 1936.)

The impurity scattering introduces a residual resis-
tance (Restwiderstand) and represents the temperature-
independent, additive quantity of resistivity in the
Mattiessen rule. A further progress on the behavior of
metallic conductors under the influence of electromagnetic
waves was made by Reuter and Sondheimer (1948) and was later
elaborated by Dingle (1953), Gordon and Sondheimer (1953)
and Pitaevski (1958). This work concerns the phenomenon
that is popularly referred to as the anomalous skin effect

.
nAd ie
anc 1igs im

'-
r

ey Y e X L T

Reuter and Sondheimer (1948), following a suggestion
of London (1940), investigated the case, important at low
temperatures, that the mean free path of the conduction
electrons for collisions with the lattice is of the same
order of magnitudes as, or even large, compared with the
normal penetration depth (skin depth) of the electromag-
netic waves in the metal. 1In this case, the way in which
the metal boundary influences the motion of the electrons
arriving there becomes important. The authors distinguished

two extreme cases: namely, that of the specular reflection

Qrthur D.34ittle, Inr.
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at the surface and that of completely diffuse reflection,
the latter being at least approximately realized in nature
according to the avai
according to the a

{1059 1a51)
\A s S b d ]

added elaboration to the original theory of Reuter and
Sondheimer, and showed, in particular, that, especially
in the case of diffuse reflection, the values resulting
for the absorptivity A(=1-R) of the metallic surface may
differ widely from the predictions of standard theory.
Qualitatively, this is to say that in this case the loss
of momentum parallel to the boundary, which an election
suffers when diffusly reflected by it, furnishes a contri-
bution to the real part of the surface impedance of the
metal. This contribution remains even if, by lowering the
temperature, the bulk resistivity and with it the energy
loss in the interior of the metal are reduced. Hence,
the metal still retains a non-zero absorptivity when the
bulk resistivity is made to vanish by lowering the tempera-
ture to 0°K. This conclusion was qualitatively predicted
by the experiments of Ramanathan (1952) at the liquid
helium temperature. The success of the theory of anomalous
skin effect in accounting for the reflectivity of metals
has been conclusively demonstrated by Dingle (1953) and
Pitaevski (1958).

In its present state of development, the theory of the

anomalous skin effect applies strictly to the alkali metals
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and monovalent metals such as Au, Ag, and Cu. Like the
simple Drude theory, the anomalous skin effect does not
apply in a region of strong resonance absorption. Table

II shows the values of the absorptivity A,
ITI-(14)

for Cu and Ag, where As is the diffuse skin absorptivity
Ve
= -3 (£ -
AS = 2 < c) III-(15)

V% being the Fermi velocity of electron and c¢ the speed
of light, and Av is the bulk contribution to the absorp-
tion resulting primarily from the electron-phonon inter-
actions. The values of Av for Cu and Ag have been ob-
tained from the formula that will be derived in the cal-
culations of Chapter IV. It is seen in Table II that
the bulk and skin effects added together show agréements
with the experimental values up to about 2 percent.
Associated with the skin effect is the skin depth
which is the thickness at the metal surface in which most

of the optical skin effect is observed, and is given by

m*c

5
5, = ( ee ) ITII-(16)

and is in the order of several thousand angstroms. This

is not to be confused with the so-called penetration depth

QAethur D Little Ine.
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ap which is a distance characteristic of the surface pene-

tration by light of given wavelength and is the distance

at which the intensity falls to % of that at the surface.
It is given by
N
&, = prm I1I1I-(17)

where k is the absorption index. For sodium at A= 0.6H,
o

k= 2.6, and 61 is approximately 180 A. In general, SI

is in the order of several hundred angstroms. The ex~-

pression of (17) is reminiscent of the similar expression

for the penetration depth at radio frequencies

c >\
Y T S S— III-(18)
470 w 2 Jzﬂ k
d.c.
where ¢ is the d.c. electric conductivity. The two

d.c.
expressions are essentially the same as far as the quali-

tative estimations are concerned.




Table II

Low Temperature Absorptivity of Metals

| Total Absorptivity A Bulk | Optical Data Used to ~
Metalsé Present Experiment Absorptiy;ty Calculate
oy (u/A) | Be i
Cu ~ 0.0048 |  0.0050 40% Beattie Conn (1955)
| . Blondi1(1956) Bor et al (1939)
: ; Forsterling + Freederickz
; : (1913)
| é
Al | 0.008 | LL9% Golovashkin et al ’19603
] z Motulevich et al (1960
: |
A 0.00UL6 0.00lly
& Biondi(1956) 20% Schulz (1951, 1954.)
Hodgson (1955)
! Forsterling - Freederickz
(1913)
Hy | 0.030 1 87% Schulz (1957)
§ n
G, | 0.037" | g 87% Schulz (1957)
7 | a= ¥ A= | Hodgson (1955)
; n | “B S B j
E s, | Ag= * Ag= g Hodgson (1955)
{ 0.008 0.008 |
| Ni | 0.015 86% . Beattie Conn (1955)
| — [
| T, | Aps ¥ Ag= Hass Bradford (1957)
| 0.054 0. 05l
Py 0. 05l ! 9L % Forsterling Freederick
- ; (1913)
I, 0.093 95% ' Forsterling Freederick
: (1913)

'+ These are the extrapdatlons from the liquid

strictly valid for solids, except, perhaps,

% The skin absorptivity AS not computed.

data, and are not

in the order of magnitude.
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Chapter IV

Quantum Mechanical Calculation of Optical and

Infrared Dispersion in Metals

IV-A Introduction

All of the existing theories are based on the common
assumption that Maxwell's theory of electromagnetism is
valid in the form that was discussed in Chapter II, and any
new theory which is based on the same assumption should
necessarily be formulated on the basic grounds laid by the
work that has been done in the past.

The classical dispersion equations are simply the
solutions to the equations of motion subject to Maxwell's
electromagnetic field. Therefore, as long as we confine
ourselves to that part of the spectrum where the free
electrons are mostly responsible for the dispersion, it is
quite natural for us to expect that a new theory which is
offered by quantum mechanical calculations should neces-
sarily be a "quantum mechanical free electron theory" which
can differ from the classical free electron theory only in
specification of the temperature dependence and also of
further frequency dependence if any, in the viscous damping
and polarizability, etc.

Various quantum mechanical dispersion equations should

approach the corresponding classical equations in the limit

QAethur D Little Inc,
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of low frequency where (W) approaches the value of o(0)

of the static case. It is hardly necessary to mention

that some of the hig

enon Oof anomalous dispersion arising from the photoelectric

resonance of bound electrons and also of the small but impor-

tant contribution of the core polarization can be explained
rigorously only with the aid of quantum mechanics.

Further we already witnessed in Chapter III one conse-
quence of quantum mechanical considerations at low tempera-
ture, namely the contribution of the anomalous skin effect
to the absorptivity giving rise to a finite non-zero ab-
sorption at 0K’

Compared with an enormous amount of qualitative and
quantitative applications of quantum mechanics to the pro-
perties of metals under the influence of static electric
fields, very little progress is found on the optical and
infrared dispersive properties of metals beyond what is
available from the classical free electron theories and
the anomalous skin effects. The less said the better on
similar considerations of alloys. However, it is self-
evident that the noble features of quantum mechanics
revealed in the metallic properties under the influence
of static electric field provide an indispensable tool
for examining the optical and infrared dispersion proper-

ties of metals, because as we saw in Chapter III, the two
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‘aspects of metallic properties are intimately linked with
each other. This was already qualitatively made use of in
the early studies of Mott (1934) and Mott and Jones (1936).
Further, much progress that has been made on the optical
properties of semiconductors can be extended to metallic
conductors with suitable modifications since, after all,
the semiconductors and metallic conductors may be considered
as differing from each other more in degree than in kind as
far as the respective conduction mechanism and properties
are copcerned. The qualitative aspects of this feature was
already discussed in the early studies of Wilson (1936) and
more recently in the work of Bardeen and Shockley (1950).
Some of the considerations that enter in the gquantum
mechanical calculations may be mentioned as a) the Pauli
exclusion principle; b) the Fermi-Dirac statistics; c) solid
band structure; d) quantum mechanical interpretations of
various interactions that contribute to the viscous damping
of conduction electrons; e) the effect of core polarization;
and f) the effect of the bound electrons. The calculations
in the frame of the free electron theory involves consider-
ing explicitly all of the above except for the last two, in
addition to the fundamental relations available from Maxwell's
theory‘bf electromagnetism considered in Chapter II. A
qualitative discussion on the effects related with e) and f)

was given in Chapter III, and excellent discussions of these

Arthur 0. 4Little, Ine.
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features, as to the mechanism and effects, are presented by
Van Vleck (1959) and Mott and Jones (1936) on e) and f),
respectively. A detailed discussion on these points is out-
side the scope of the present work.

In the theoretical calculations that will follow, it is
attempted to find explicitly the - and T- dependent struc-
ture of the damping coefficient and hence the polarizability
& and also the bulk absorptivity A, (w,T), in the framework
of the free electron theory and with the assumption of
spherical Fermi surface. That very little error is involved
in assuming a spherical energy surface for most of the body-

centered, face-centered and hexagonal cubic lattices was

pointed out by Wilson (1936) and Mott and Jones (1936), and is

shown in the following qualitative expression for d.c.

conductivity (Jones, 1956);

ij _OF(E)
O, = —ShE fff( > T\ 5k ak >(d3

i,j =1, 2, 3)

where F(E) is the dimensionless electron distribution
function at energy E(k) and (k) is the d.c. relaxation
lifetime of an electron with momentum (k). Furthermore,
even for a metal which, in a single crystal, has a detect-

able degree of anisotropy, the spherical approximation of




Table IV

Metals with Large Anisotropy

Metals Anisotropy in d.c. resistivity Reference

Max. Min. Ratilo
G, (solia)[ 55.(5) | 7.8(5) 7 Powell (1949)
Hg (So11d)| 23.5 17.8 1.32 Sckell (1930)
S, h2.6 35.6 | 1.2 Bridgman (1925)
Cy 8.3 6.8 1.22 "
T 1.54x10° | 5.6x10% | 2.75 .
2, 6.05 5.83 1.04 "
B, 138 109 1.2 "

Powell, Nature 164, 153 (1949)
Sckell, Ann. Physik (5) 6, 932 (1930)
Bridgman, Proc. Amer. Acad. 60, 306 (1925)

drethur 2. ittle, Inc.
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Fermi surface works well for a polycrystalline sample.
Some particular cases of metals in which interband tran-
gsitions make predominant contributions to various elec-
trical and optical properties and for which nonspherical
Fermi surface must be used, will be treated in the
future chapter on transition metals.

The results on transition metals should apply equally
well to other nontransition, multivalent metals Qhen inter-
band transitions need to be considered.

For metals to which spherical Fermi surface applies,
effect of the periodic lattice is incorporated entirely
into the effective number of electrons per unit volume and
the effective mass. This is in accord with the "effective
mass method” which will be discussed in more detail in the
foliowiny section of this chapter. Then, for a metal which
is free of impurities, the only perturbation to the elec-
tronic motion originating® from the presence of lattice is
the election-phonon interaction or the interaction between
the "free" electrons and the thermal vibrations of thé
lattice represented by a finite temperature-dependent dis-
tortion of the lattice from the perfectly periodic potential
of 0°K. Such a perturbation decreases rapidly as tempera-
ture is lowered to the absolute zero. The metals with a
substantial impurity content and alloys, especially the

ones with a random lattice, are exceptions to this picture:

QAethur D Yittle, Ine.
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there is a finite, temperature-independent perturbation
giving rise to a non-zero resistivity at 0°K, the total

Yy this plus an additional tempera-
ture-dependent term (Mathiessen's rule), (Mathiessen and
Vogt, 1864).

The bulk absorptivity A, the conductivity o(w) as
well as the damping coefficient are calculated from the
result on the rate of energy expenditure W(®,T), which is
related to o(w), according to the free electron theory,
by

= E2
new - 2

o(w) IvV-(1)

where o(®) ig in turn related to the damping coefficient
through the typical free electron dispersion equations,
and where (E2/2) is the energy density per unit volume
of the electromagnetic radiation field.

Idnetification of the damping coefficient in the
final expression of W is straightforward when we compare
the result with the corresponding d.c. expression derived
in Wilson's theory of metals (l§36). Thus, the approach
adopted in the present work differs from the usual method
of finding the damping coefficient directly by calculat-
ing the inverse of transition lifetimes (relaxation time)

from the transition matrix elements.
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IV-B Calculational Method and Assumptions on Damping

Interactions

It will be assumed that the predominant contribution
to the electron damping comes from the electron-lattice
interaction in cooperation with the perturbing electro-
magnetic field. The contribution by electron-electron
collisions, which are important at very high frequencies
and at very low temperatures, will be combined with the
results of the present chapter using the formulae obtained
by Gurzhy (1958). Further, when metal contains a sub-~
stantial amount of impurities, the effective damping will
be the sum of the contributions by electon-phonon pro-
cesses, electron-electron collisions and impurity scattering.
The additional contribution by impurity scattering is
responsible for the temperature-independent residual
resistance in the Mathiessen rule. In the present chapter,
calculations will be carried out for a pure metal. However,
if the impurity effects need to be considered, a constant
term is to be added to the damping coefficient. This ad-
ditive constant may be calculated from either an optical ;
data (Golovashkin et al, 1960) or from low temperature
measurements of d.c. resistivity.

In this chapter, only those transitions which take

place within a single band in the lowest Brillouin zone will

Qrethur D Little, nr.
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be considered: i.e., intraband transitions. The case
where the interband transitions are involved will be left
to a future chapter on transition metals.

Once we adopt the Hamiltonian in a specific form,
various transition probabilities can be found by the
usual quantum mechanical methods. We shall use the per-
turbation method similar to what was used by Wilson (1936)
and Holstein (1954). Then, the transitions which are
responsible for the damping and dispersion are the second-
order processes in which an electron initially at the
momentum state k,; makes a transition to the final state
k- upon simultaneous absorptions or emissions of a phonon
and a photon.

We define

(£)
Pray (Bam 52)

as the probability per unit time for a comnduction electron
to make a transition from the state k; to the final state
k., with simultaneous photon and phonon emissiocns (+) and
absorptions (-) when it is certain that the k , state is
completely empty and k,; state is completely filled and
where the superscript (*) designates the phonon processes
and the subscript (%) the photon processes.

According to the Fermi-DPirac statistics, the probabil-

ity that the state k with the corresponding energy E(k) is
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filled at temperature T(°K) is given by the Fermi function

1
1+ eﬁ(E—EF)

f(E) = IV-(2)

where Ef is the Fermi energy and B is (KT) ™!, K being the
Boltzmann censtant. Then, the total probability per unit
time of an electron initially at the state k, to make a

transition to any of the other empty states by either one

of the four processes designated by the supercript ana

subscript (%) will be given by

PP 2 Yo - e ) w@
ko
where the factor 2 comes about because, according to the
Pauli exclusion principle, two electrons with opposite
spins can eccupy the state with same k and E(k). The ap-
pearance of [1-f(E,)] embodies the Pauli exclusion
principle.

In order to represent the gross manifestatiens of such
microscopic transition processes, we have to average the
probability of (3) ever all the initially occupied states
according to the Fermi-Dirac statistics. The resulting

average value of probability (P) per unit time will be in

the form

Qrthur D Little, Ine.
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(P((r)) Z Zf(El)[l-f(Eg)] P(S) (_151 ->1_<2>/<Zf(El)> IV-(4)
Ik

ki1 ko

where r, s = (2).
Then, following Holstein (1954), the power expended

by the electromagnetic radiation field is defined as

W = }Z“hm [(p(r)) (PéS)ﬂ IV-(5)
r=(%)

This implies simply that the net power expenditure is
the total power absorbed minus the amount which is emitted
into the radiation field. There is an analogy between (5)
and the corresponding statistical mechanical formula of
Wilson (1936).

The relation (5) is dependent on both the frequency
® and temperature T. A part of the temperature dependence
comes from the Fermi-Dirac statistics of the electron dis-
tribution and the other part comes from the Bose-Einstein
statistics of the phonon distribution (the thermal vibration
of lattice) which enter in the Hamiltonian averaged over
the distribution of phonon states.

Once thevT- and w-dependent expression for W is ob-
tained various dispersion formulae follow naturally. For
instance, the high frequency conductivity o¢(w) is given

by




- E2
n W= - o(w) IV-(6)

Thus, it is evident that the main task of theoretical
calculations is in finding correct values of W or (P).

In general, the expression for W wi}l vary depend-
ing on the particular physical model of the system, the
methods of computation, and the particular Hamiltonian
that are adopted. According to the effective mass method
of Peckar (1946), Slater (1949), Wannier (1937), and
James (1949), and to the tﬁeorems developed by Bardeen
and Shockley (1950), the electrons in an isotropic (cubic)
lattice may be considered as free electrons of effective
mass m*, and when the lattice is distorted by a small

amount resulting in a small change in the potential,

A =60 = Uylx) - U () Iv-(7)
the amplitude part of the electronic wavefunction A(x)
satisfies the Schrdinger equation
1 5
[- omw - VEH SU:l A(x) = EA(x) IV-(8)

where Uo(g) is the original undistorted periodic potential
and Ud(g) is the distorted potential which depends on the
strains eij that are imparted to the lattice in distortion.

If the lattice is not cubic, we mustreplac<§§-ve> by

Arthur A Little, Jne.
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where (xl, X o X3) are the three principal-axis coordinates,

and (m;, mgg

m%) are the three values of effective mass.
The amplitude function A(x) is a smoothly varying function
which does not vary appreciably over the unit cell: if

A(x) does not meet this condition, the method of effbctive
mass is inadequate without a considerable degree of refine-
ment. In general, wavefunctions of electrons in metals are
rather flat except in the middle of the atom (Mott and
Jones, 1936), and the volume within which the wavefunction
is not flat is relatively small, so that the charge density
in the flat region is almost exactly <—%;->, where Vs, is
the atomic volume. This flatness of wavefunction is the
reason why the approximation of neglecting the periodic
field (free electron approximation) gives good results for
metals, and thus Equation (8), should work. According to

Bardeen and Shockley (1950), the electron-lattice potential

Vp(g) may be taken in the form
Vp(x) = g A (x) Iv-(9)

where g is a constant and A(x) is the dilation. Neglecting
the other terms in the expansion of Vp(g) in powers of the
strain €ij is equivalent to neglecting the dependence of

the effective mass on the strain. It was shown that the
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next largest term in Vp(:_z_) to that given in Equation (9)

is proportional to the square of momentum times the strain
~ 0(k?2 x strain)

and, for the usual order of magnitude of k2 involved in
metals and for the size of the strain in the thermal
agitation of the lattice, this second term can safely be

neglected.

Following Bardeen and Shockley (1950) and Holstein
(1954), the Schrddinger equation for a conduction electron
interacting with the perturbing electromagnetic field A

and the lattice vibration may be written in the form

oV _ 1 i e .\ 10
in$fH-= <5 <1nv+ - A>w+ Vp(®)¥  1V-(10)

where Vp(g) is interpreted as the electron-phonon inter-

action potential given by

1
a;(@) = JENQ’J./ZpOng’j)

* =
a;*(a) JE&[NE’J& 1]/2%"“’3,3)

Qethur D Little, Inc.
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where (aj*(g). aj(g)D are the phonon creation and

annihilation operators, c% is the mass density, wg j is
’

the phonon frequency

and (éq j) are the orthonormal basic vectors,

’

(é . e L) = 8, .,
a.] q,) JJ

and g is a constant whose value is of the same order as
the electronic energy.
Fer an isotropic lattice, we have the simpler

expression

" i(q.x - ELt/h
B - Z <2NMVE l:“N(s.)e('q§ gt/
IV-(12)

) JE?EJ—I—I e-i(g.g - eq/ﬁ)]

where we have used the following notations:
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M : Mass of the lattice

V : The sample volume

Np : Phonon number density (per unit
volume) = —%ﬁ—

d : Phonon wave-vector (momentum/%)
E : Energy of a phonon at the state (q)
N(q)

(]

The number of phonon states for E$that
are occupied, and is according to

Bose-Einstein statistics,

1

ePBa 1

N(g) =

In practice, it is often possible to distinguish longi~-
tudinal and transverse waves in a crystal and discard the
latter because of the factor (gj-g) in Equation (11). This
is what has been done in obtaining Equation (12). This is
also related to the approximation of taking Eg_dependent
only on the magnitude q and using the simple Debye disper-
sion of phonons when the accoustic branch of phonon spec-
trum makes predominant contributions. When KT has a value
comparable to the discrete quantum of upper branches, the

optical branch contributes significantly.

In the present work, the electromagnetic field will

be treated purely classically and we will use

Qethur D %Little, Inc.



A(x) = <A(x)e iot L A (x) *i‘”t>
S %(ei(g.g—wt)_ e-i(p_.i-wt)> TV=(13)

where E is the electric amplitude vector which satis-
fiegs (E.p)=0 when we choose A to meet the divergence
condition (V.A)=0. The Schrédiger Equation (10) now

becomes, upon neglecting the term quadratic in A,

ne
in _%tL = - o V3 +<—ir—i—:-ic— A.V+ Vp)\Lr IV-(14)

In the absence of the perturbation by the electromag-
netic field and the lattice vibration, the stationary

states of electrons are represented by the wavefunctions,

- i (KO_ - E t ﬁ)
\lt&(&,t) = gt \&-X kt/ IV-(15)

where

Ek = (11%2/2m*) IV~-(16)

The perturbed wavefunction V¥(x,t) may be expanded
into a superposition of the unperturbed, free electron

states in the form,

vix,t) = y B()i)wk(&,t) IV-(17)
_1; =
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where B(k) is the expansion coefficient with an explicit
time dependence. By substituting Equation (17) into (14),

the equation of motion for B(k) is obtained as

OB (k) eXi(k.E)
B =% = Zino [B(l‘-'ﬂ)e

1(Bk- Eicipt H0) t/n]

i (EE' EE_R- Yw) t/1

- B(ktp)e
IV-(18)

* 182{ < NV _ [B<k-_a.> Tn ot Bk Bi-g-EQ)t/f

B (k) @:1‘ 1(Eg- Eeqt g_)t/n]}

In the absence of the lattice vibration we would have

only the first term [---] in Equation (18) arising sole-

coefficient B(k) cannot be made to increase indefinitely

with time because the energy terms

Bx™ Bgap * Ho

in the exponents cannot be made to vanish. In the
language of perturbation theory, the transitions are at
most virtual and this corresponds to the fact that a
photon cannot be absgrbed or emitted by a free electron.
Therefore, the electromagnetic perturbation alone cannot

explain the damping in optical dispersion (Heitler, 1957).

Qrethur D %Little, Ine.
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Following the usual procedure of the perturbation method,

we write

\D
A

B(k) = 8(k,k ) + B, . (k) + R (k) +
T —' 7o (L)'= (2) =

-
e
1

s~

-

where B(l)' B(2)... are the first order, second order,
... terms for an electron which was certain to be at the
state go initially. The electromagnetic and the lattice
vibration terms will be considered as the first order
perturbations in Equation (14). Then, B(l) in Equation
(19) will contain only those terms which are in the
first power of E and g as well as those quadratic in
each of E and g. The combined action of the electro-
magnetic field and the lattice vibration is described

by that term of B which is bilinear in E and g, and

(2)
we will need only this part of B(2) for our dispersion
calculations.

In order to calculate B(2)' we need to obtain B(l)
first. By substituting Equation (19) into (18) and
collecting the terms which are of the first order in E

and g, and integrating in time from 0 to t, we obtain

the following:
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l(Ek- Ek E- ﬁb)t/ﬁ- 1 )

ie¥ (k.E
Biy® = e [8@0’1‘ “R) < By E_p- 10

- 8ko,ktp) (e E - E,_+ o

i(EE- Egipt Yw) t/n )
e )

IV-(20)

i(E_k_- Ex-q- EQ)t/ti_
) lgz{ < 2N MVE, [5@"”&-9} fi i F-g” Bq 1 >

l(Ek‘ Ekfgk Eg)t/h 1
- 8(ko,ktq) VN(Q+L ( R > ]}
K Pkrg g

Using Equation (20) in (18), and collecting only

those terms which are bilinear in E and g, we obtain

. K2a? N(@)®
By (ktatp) = <2NPMVE > ( ehe ){ g 17

+ : igt/H
5[(&‘ }fEiE TR -%4—{1) - — Tv-(21)
kfg "k g ktp k) :
k * g g8t/ k S|
T (B g™ Bt Bq X e (B, sp” B F 10) BT ]

where k is new written in place of kg, and

Qethur D ULittle, Ince.



E' = E - E, _+¥u IV-(22)

gll = E _E

The probability per unit time, P(k »k*gip) for the
electron to make a transition from k to (kig:p) under

the combined action of the electromagnetic and acoustical
fields is given by the absolute square of B(2) divided by

time,

t IV-(23)

A significant contribution to Equation (23) comes
from those situations where one of the energy denominators
contained in Equation (21) becomes zero. Only in such
cases does the transition probability per unit time ap-
proach a constant nonvanishing value for a large t. The
zeros of the energy denominators may be grouped into two
categories: those which involve a coincidence of initial
and final energies inclusive of the photon energy ¥w and
phonon energy ng and those which arise from an energy
coincidence of an intermediate state with either the

initial or final state. The two terms of Equation (21)
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which contain &' and t" will not contribute to the over-
all transition probability, since they cancel out in cal-
culations of the energy expenditure. It is easily shown

that

- VF
|§v|z|1+ ——-—c lﬁ(b ~ B

On the other hand, the zero, t"=0, is physically possible
and the resonance factor containing t" gives rise to 8&(t")
in the expression for the transition probability. However,
the terms with ¢' and ¢" contribute equally to both absorp-
tion and emission processes of photons, and the over-all
contribution from these terms to the net absorption, which

is obtained from

@ @
HORCY

cancel out. Therefore, we only need to evaluate the tran-
sition probability at the singularity ¢=0.

Equation (21) may then be replaced by equation,

B, (kigtp) = q< >< JN(g) eﬁ
(2) 2N MVE JN_(_Z_)—J:l—

IV-(24)
( K+ g I (Baqep-EiF EgF o) e/t N
X E- —=—-—¥—+ >
=\ E, , -E +E E -E J—ha)
ki "k g kip k*.q*z "':_ls:F B ¥ "

QArthur D.4Little, Ince,
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Let us consider the transitions k - (k+g+p) first.

We nétice that

(E - E ~-E +( E,_, =-E, ~ ﬁ3\=
\"kt9e 'k g)(yp_ kK )

<E]£+E— E]i>- (E]ggm- E]i_*_g-) +¢ = 0 IV-(25)
The quantities of the form <%9£f- E&) represent the

(v/C) corrections, and will be ignored. Furthermore, ¢

may be taken equal to zero in Equation (25); a deviation
from zero need be considered only in the last factor of

Equation (24) representing the resonance factor.

Equation (24) is then replaced by

B(2) (ktatp) =g ( 2N _MVE _ N(g) —5 B~

v E.g e -1
w + EE- E}ﬁ"‘E 3 IV-(z29)

for the transition, k sk+g+p.
The transition probability P(k -»k+g+p) may be evalu-

ated readily from Equation (26) upon taking

(%Efﬁf Ekf ﬁ%?ez- Arw

and following the popular practice (Heitler, 1957),
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t 2
Li e -3 iEt!
8(&) = | :moo 21t t g f SIEE/A G
(]
< i 2
_ Lim _#H elgt/h-i IV-(27)
t 50 21 t 13
We thus have
ng2N(g)ezi*q2 (E.g)?
P(k »k+g+p) AN MVE m* 243 TE 5(¢) IV-(28)
P q

Upon introducing the final state momentum k- as
(gfgfg) and denoting the initial state k as k,, and
noting also that the argument t of the delta function

5(¢) representé the absorption of a phonon and a photon of

energy %o and E, respectively, we may rewrite (28) into

the form
(-)

Poy (aoks) - >N (q) eZg®

ANpMVEqm*Z o (E - @)% 8(Bz- E3- Eq- 1) Iv-(29)

where the superscript (-) refers to the phonon absorp-

tion and the subscript (-) to the photon absorption.
From now on, the photon momentum p will be neglec-

ted for the reason stated previously, and represent the

final momentum k. as

x
N

0
1=
H

I+
e

IV-(30)

QAethur D Little, Inc.
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Then, Equation (29) may readily be generalized to

include the emissions (+) of phonons and photons as well,

and we have the general formula,
(%) __e2E- Q92 () v-(31
Py ko k) = o 55 61 (@) B(Ea- Byt F ot Hio) Iv-(31)
where
N(g)+1
(+) _ _nhgZ3g? ) _
G\ (q) = N M. N(g) | IvV-(32)

which are proportional to the probabilities of absorp-
tion (-) and emission (+) of phonons without scattering
(Wilson, 1936; Born and Huang, 1956).

Next we evaluate (Pé:;)(r,s=t) from Relations (3)

and (4). Substitution of Equation (31) into (3) gives

us
(r) ' _e®(E- 9% (r)
P(s) (ky) = Z BT G (q)[1-£f(Ep) ]d(Ea- B+ rE_q'I- stw) IV-(33)
ko

The summation over the final momentum states k, may be

replaced by corresponding momentum integral,
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t 2
IJ' ﬁ - A s []
B(¢) = t:moo a1 t ; felgt /4 de’
(o]

3 2

_  Lim _#_ 1 elit/ ) IV-(27)
t 50 2 t 3
We thus have
ng2N(g)esti*qa  (E.g)® _
P(k »k+q+p) AN MVE a¥ B, B TE B(¢) IV-(28)
P q

Upon introducing the final state momentum ko as
(gfgfg) and denoting the initial state k as k,, and
noting also that the argument t of the delta function
5(t) represents the absorption of a phonon and a photon of
energy #w and Eq respectively, we may rewrite (28) into
the form

(-)

Py (o ka) - i q>N(q) e%g2

4NpMVE qm#2 o *

(E - 9)2 8(Ea- Ey- Egq- Ho) IV-(29)

where the superscript (-) refers to the phonon absorp-

tion and the subscript (-) to the photon absorption.
From now on, the photon momentum p will be neglec-

ted for the reason stated previously, and represent the

final momentum k. as

Fag
N
U]
=
=
I+
2

Iv-(30)

QAethur D.Little, Ine.
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Then, Equation (29) may readily be generalized to
include the emissions (+) of phonons and photons as well,

and we have the general formula,

* 2E-92 (+
P((i))(l_gralg ) = —%,-;;-'gif ¢! )(_q_) B(Ez~ Eit ng How) IV-(31)
where
(+) _ thq 2e2 N(g’_)+l )

which are proportional to the probabilities of absorp-
tion (-) and emission (+) of phonons without scattering
(Wilson, 1936; Born and Huang, 1956).

Next we evaluate (Pé:;)(r,s=i) from Relations (3)

and (4). Substitution of Equation (31) into (3) gives

us
P Oy —E SEEQE X [1-£(Bo) 16 (Eam Bt rE + sho)  IV-(33)
(s) =1 . 2Vmew 4 9 2 2m " q

ko
The summation over the final momentum states k. may be

replaced by corresponding momentum integral,
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)~ e [ e
&

d]ig = k22 dk gdgg

dE > ]
'grad Ezl

- o= 2 -
ds&a' ds&a K=d 5 IVv-(34)
In virtue of the relation, q=i(ge—54), the summation over

k- is equivalent to summation over the phonon momentum

g and also to replacing the summation by the corresponding

integral in momentum space,

T e e

9
At the same time, it is expedient to average over the
direction of the electric field with respect to q.
One thus obtains

(r)
P(S) (El) =

C2
481 3ok

o \ro +1
__C°E =3 j q4dqf du G(r) () [1-£(E) ]
o

-1
IV-(36)

h2 2 h2
X 6( 2m} g kags + rE+ st

where we have taken (E.g)2 = 4 gq®E®? and p=cos9, 6 being
the angle between the momenta, k; and g, and E =

Ea(ky 2 9).

Aethur D Little, Inr.
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The integral over q extends from 0O to the maximum
value q, where 9, is determined from the Debye tempera-
ture © and the longitudinal phase velocity of sound up

by the relation,

yol = K@ -(37
u g = Ko IV=-(37)

where K is the Boltzmann constant. It is also determined
equivalently from the phonon number density Np per unit

volume,

N_ = gn (22)3 qg = qéy%wa IV-(38)
Here we have assumed the simple Debye dispersion of
phonons. This approximation is known to be satisfactory
at ordinary temperatures, such as in heat capacity cal-
culations. The shortcomings of the Debye model of lattice
appear mostly at very high temperatures where the average
momentum transfer in electronic processes is considerably
larger than the Debye cut-off value, and also at very low
temperatures. More complete formulation of phonon dis-
persion is available; see, for instance, Leighton (1948)
on monovalent metals and Bardeen (1937) for a more
rigorous form of electron-phonon interaction involving
the Umklapp processes important at very high temperatures.

The work of Leighton (1948) shows that a more general
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treatment than Debye's model of the lattice dispersion

leads to rormulae which are essentially the same as those
obtained from the Debye theory, except at very high tempera-
tures. The difference is that the Debye temperature © is no
more a constant but contains a small temperature-dependence.
The dviation of © from the value determined from room tem-
perature measurement of heat capacity, for instance, becomes

more enhanced at lower temperatures. The temperature-

dependence in © has also been discussed by Wilson (1936).

In general, the usual Debye temperature @ and its low-
temperature value 9; (notation used by Wilson) are in the
same order of magnitude. It is expected, therefore, that,
as long as the Debye cut-off is used as a parameter which
is to be adjusted within a small margin in the neighborhood
of its récm temperature value, the Debye theory is satis-
factory in the present formulation. Furthermore, it will
be shown that various optical and infrared dispersion
properties are not very sensitive to a small variation in
e,

The delta function in Equation (36) is eliminated by
integrating over pu from (-1) to (+1). The existence of
a real p such that the argument of the delta function
vanishes for all g between zero and 9, has been asserted
by Wilson (1936) in his calculations of d.c. conductivity.

That the same can be asserted in the present work involving

Jrethur D.Little, Inc.
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an electromagnetic field is shown in the appendix.

o eE? P e o [1-£(E v-(39)
&) " e, ) T94C T (@DEE- B )]
o

P

In obtaining Equations (36) and (39), it has been
assumed that N(g), Eg and hence GOQ(q) depend only on the
magnitude q and not on the angular variables. The only
part of Equation (33) where the dependence on the azymuthal
angle appears was in (gfg)a with k, as the polar axis.

The argument of f(---) in Equation (39) results from
satisfying the delta function after integration over u.
Calculation of (P:f)) proceeds by multiplying (39) by the
Fermi function f£(E;) and summing it up over the initial
momentum state k,;, and dividing the entire expression by

the normalization,

Ej f(E1)

ky
In these calculations, we shall assume that the Fermi

energy E_ obeys the condition,

£

E; >> fiw, KT IV-(40)

Thus, it is equivalently assumed that, for the
frequency range that is of interest, most of the tran-

sitions take place in the neighborhood of the Fermi level,
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treatment than Debye's model of the lattice dispersion

leads to tormulaec which are essentially the same as those
obtained from the Debye theory, except at very high tempera-
tures. The difference is that the Debye temperature © is no
more a constant but contains a small temperature-dependence.
The dviation of 9 from the value determined from room tem-
perature measurement of heat capacity, for instance, becomes
more enhanced at lower temperatures. The temperature-
dependence in @ has also been discussed by Wilson (1936).

In general, the usual Debye temperature ® and its low-
temperature value 9; (notation used by Wilson) are in the
same order of magnitude. It is expected, therefore, that,
as long as the Debye cut-off is used as a parameter which
is to be adjusted within a small margin in the neighborhood
of its room temperature value, the Debye theory is satis-
factory in the present formulation. Furthermore, it will
be shown that various optical and infrared dispersion
properties are not very sensitive to a small variation in
e,

The delta function in Equation (36) is eliminated by
integrating over u from (-1) to (+l1). The existence of
a real p such that the argument of the delta function
vanishes for all g between zero and q,- has been asserted
by Wilson (1936) in his calculations of d.c. conductivity.

That the same can be asserted in the present work involving
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an electromagnetic field is shown in the appendix.

(r) g2 plo > () (39)
ki) = - - - - V-
Pey &) = m e, J Cda 6T (@ 1-£(Ey TE - stw)] I
o

In obtaining Equations (36) and (39), it has been
assumed that N(g), Eg and hence Goo(q) depend only on the
magnitude g and not on the angular variables. The only
part of Equation (33) where the dependence on the azymuthal
angle appears was in (Qvg)a with k, as the polar axis.

The argument of f£(---) in Equation (39) results from
satisfying the delta function after integration over u.
Calculation of (P;f)) proceeds by multiplying (39) by the
Fermi function £(E;) and summing it up over the initial
momentum state k;, and dividing the entire expression by

the normalization,

z £(E1)

k
X1
In these calculations, we shall assume that the Fermi

energy E_ obeys the condition,

£

E . >> fiw, KT IV-(40)

Thus, it is equivalently assumed that, for the
frequency range that is of interest, most of the tran-

sitions take place in the neighborhood of the Fermi level,
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and gf) (k1)F(E,) differs from zero only in the neighbor-

hood of ElrzEf. With these assumptions being considered,
the density-of-states factor Jil may be taken out of the

integral set equal to Jif. Then, we obtain

(s)) < z f(31)> f(El)P(( ))(_1)

90
- e2g2 f = (r) ()
T 1enPmtoPkoES o q7dq G (q)F(s)(q)

IV-(41)

(r)
where F(gy (q) is the integral,

+
(r) z
F(:; (q9) = —é—f dz 1+:§_ * 1+e%+a

- o0

N
]

B(Ey - E - ::EEl - shm) IV-(42)

[+
]

g (rEn + stiw)

The integral F() (q) can be evaluated exactly, and we

have

((s))(q) = (E+ snw/t B(rEq+ stiv) 1] Iv-(43)

The power expenditure W(®) which was defined in Equation

(5), can be evaluated using Equations (41) and (43), and

Jrethur M. ULittle, Inc.
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fu g = E_ = ¥o IV-(44)

kL

along with the Relations (37) and (38), and it is in the

form

90

. e?E2 340 a®)| p E. (r)] -(45

V@) = E Tenem Tk ot 7 f T4 6 ["(-) F 1v-(43)
r=% °

(r)

We substitute G of Equation (32) into (45) and use

N(g) =1 ePBa _ )

In order to obtain the power expenditure per unit
volume, it is expedient to introduce the effective number
of electrons per unit volume, ne. After some algebraic

manipulations, we finally obtain,

- n_.e 2
n W = —£5 R(é' >5 s Z(®,T) IV-(46)

where R is constant given by

3
R = —2-’2{_ hagaNp/(Zm*E;)% MK8 IV-(47)

and Z(w,T) is a function of both w and T given by

H M 2
I(u0) = —S-2ERLD {Js - S5y g w0
Iv-(48)

(] 2
-2 _‘e_‘lL m K4(u’a)}

e2H. 1
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and P((:;) (k,)F(E,) differs from zero only in the neighbor-

hood of E; ~E With these assumptions being considered,

f.
the density-of-states factor Jil may be taken out of the

integral set equal to Jif, Then, we obtain

() -1 ' (r)
o= (Y)Y rmor
E

ka
Iv-(41)
9
- eZE2 5, (1) (r)
¥ enfmratPloks fo 749 6 (DF gy (@
(r)
where F(s)(q) is the integral,
) T
r 1 1
Py @ = [ oo b
z = B(Ey - E - rE& - shm) IV-(42)
a = B(rE_ + stw)
The integral F(S)(q) can be evaluated exactly, and we
have
F((:))(Q) = (rEq+ Mea(’mq*’ stim) _ 1] Iv-(43)

The power expenditure W(®) which was defined in Equation

(5), can be evaluated using Equations (41) and (43), and

Jethur 4. Little, Inc,
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fu q = Eq = fw IV-(44)

9
along with the Relations (37) and (38), and it is in the

form

9
W(w) = y .3 [ q>dq G(r)[F ) g (r)} IV-(45)
r=% :

lemPm*fu k Eg . ) "
o
We substitute G(r) of Equation (32) into (45) and use
E
N(q) = 1/eP"@ -1

In order to obtain the power expenditure per unit
volume, it is expedient to introduce the effective number
of electrons per unit volume, ne. After some algebraic

manipulations, we finally obtain,

_ nee2 T \s E2
n W= —& R(e > L Z(w,T) IV-(46)
where R is constant given by
3
R = —9-’2‘- nzgaNp/(2m*Ei35)35 MK® IV-(47)

and Z(w,T) is a function of both ® and T given by

) H_q1y2
J(u,@) = Q_S{;n_h(ﬂ)__ {Js(u’a)' -_e(g_p':_l)l_— M J4(u,0‘)
IV-(48)

H_qy2
(e -1)

-2 eg H Ke(u,)
e3H- 1
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(B . (8
where m = (7 ) ; a = <T>
a
g (wa) = f yldy/(e¥- e¥) (eM- e7Y)
°, IV-(49)

Kn(“aa) = JF ylay/(e¥- eh) (et~ e7Y) (e¥- 1)
(o]

This is the basic relation from which important dispersion
relations will be obtained in the succeeding parts of this
chapter.

A close examination of relations (48) and (49) reveals
that Z(u,@) approaches values which are independent of y and
hence ® in the limit of p > o and also when p - 0. In parti-

cular, when p -0, we have
Z(1,%) ~ I3 () IV-(50)

where

o7
o = Y ~Y
Jg (@) = f ysdy/(e*- 1) (1~ e ¥)= Js(u,a)] =0 IV-(51)
[¢]

This is identified with Wilson's J5Qﬁ%{> ., and, more impor-

tant, with Grtneisen's formula (Grlineisen, 1933) for tempera-
ture-dependence of d.c. resistivity when we multiply by oS,
The w-dependent quantity Z(u,@) has no precedence in
the classical theories and hence constitutes an important

consequence of the present theory.

QArethur D Little, Inc.
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For the coming discussions on dispersion properties,

it is convenient to define the gquantity bep(“"a)' the
subscript e.p. signifying the electron-phonon processes,

such that

by (1,0) = §§5‘§§ = J;l(a) Z () v-(52)
The numerical values of bep(u,a) can be obtained when

we evaluate the values of Jn(u,a) and Kn(uxx) for

arbitrary values of w and T. The d.c. guantities J:(a)

and K:(a) have been discussed in many references and are
available in calculable forms. All types of integrals

which enter in evaluation of bep(“”a) are discussed in

the appendix, and the results are given as follows;

(for n>0)

n
41
_ 1 1 n-m n ga-E)m
Tn(9) = 3] y m+l B m<m>[ SR

m=0

m+l m+1
F T SR 0™ M G

(o} n-m+l .0
+ 3 @) + (-1 Ty 1)

- (D™ L wa +[-1]“+1>]1 IV-(53)
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n
‘ 3 1 1  nem n " n-m o m+1 m+)
Kn(h,a) - (eap_l) (eu_l) X m+1 M <m > {e (‘1) [ ep,%-l e e“_ "]

m=0

e“(-1>°"“[ @) - 1° (u)] + 5——*9—-— Sy B

m+1

+[ o @) + (<D™ J:ﬂ(u)] - @)D ¢ (@Hsm)

(1+e“) i 1+ o
- (mtl) § (@-u; -u)} O " "o Jan @
- (L ;m(a;o>J] IV-(54)

where J. 5. (x) is the same as what was defined in
egquation (51) with the only difference that the upper

limit ¢ in equation (51) is to be replaced by x, and

a

¢, (asb) =f y "dye IV-(55)
b

(o]
Numerical evaluation of the d.c. quantities [Jn(x)}
is considerably simplified in the limiting cases,

x << 1 (high temperature) and x >>1 (low temperature).
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For x<< 1, we have

(o] - n=2 7 .n ’ n-1 s
Ty (%) _h/ﬂ(y R A -0 )y = n-1 % 12(n+1) *

and for x>> 1,

Ty (x) = Jp(») =

-82-

&) 00
n-1
“f oy ”"Z -
0 N r=1

rn

(e.g. J (=) = 124.4)

n+1i

+...

IV-(56)

IV-(57)

e
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n

i 1 I G W T e Nkt Vi
Kn<p~)a) (eap_l) (e“-l) ?: 1 (m > {e (-1) [ eu-'a-l - e“’-l]

_m=0
m+L mt1
M n-m o @-p) mtl
+ e ( 1) [ m+1 (a-HJ') m+1 (p')] + ea..‘p-l -(-1) e..“_l

+ [ 30, @) + (™ Jnj’ﬂ(u)] - @) (-1 ¢ (@Hsn)

J .. (@

(1+e“) ki 1+e™y o
- (mH) ¢ (@w; -u)} o - °,

- (1+e" gm(a;O)}[ IV-(54)

where Jéll(x) is the same as what was defined in
egquation (51) with the only difference that the upper

limit @ in equation (51) is to be replaced by x, and

a

~

¢, (aib) =J y dye ¥ IV-(55)
b

(o)
Numerical evaluation of the d.c. quantities {Jn(x)]
is considerably simplified in the limiting cases,

x << 1 (high temperature) and x >>1 (low temperature).

Qethur D 4ittle, Ine.



For x<< 1, we have

X
o -
5 = [ 7
o]
and for x> 1,

I (x) = Jp ()

.z .n
12 ¥

(e.g.

-82-

' . n-1
*een)dy = n-1* - 12(n+1) X
n-1 ad
—v _dv _ ., -
e -1
r=1
J () = 124.4)

IV-(57)
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IV-D Calculation of Electron-Phonon Damping Coefficient

The damping coefficient which is contributed by the
electron-phonon processes or the electron-phonon collision
frequency as it is often called, can be obtained in a
straightforward way when we compare the expression for (W)
obtained in Section IV-C with the corresponding, well
known high frequency dispersion formula which is obtained
by solving Drude's equation of motion for a free conduction
electron.

It is well known that the power expenditure (W) for
a free electron system is related to the optical conduc-
tivity o(w) by the relation

Eolo) oy W) IV-(58)

2

where (W) is the power expenditure due to one electron
2

per unit time and EE is the energy density of the

electromagnetic field. Upon comparing Equation (58) with
the expression for (W) in Section IV-C, we obtain the
relation

1 wg 1

et Rep '&'5— Z(p,x) Iv-(59)

G‘ep (w) =

where Rep is a constant independent of temperature and
frequency. It is determined by the properties of the

lattice, and

dethur D Little, Ine.



where o, is the frequency characterist
plasma oscillation. w, is generally outside the high

- frequency limit of the free-electron dispersion spectrum.

At ordinary temperatures, most of the m-dependence

in Equation (59) appears through ®»® in the denominator as
in the case with the high-frequency conductivity of Drude.
Z(n,%) represents a relatively small variation for changes
in ®. According to Equation (50), we have Z(j,0)~ J;(a)
when p = 0. The last three factors in Equation (59) re-
produce the well known Grtineisen formula. It also repro-
duces the d.c. damping coefficient derived by Wilson (1936)

when we identify our g and Np with Wilson's C and A™ in the

expression for R given by
ep

3 2
_ om 1% Npg IV-(61)

R = 3
€P 2 2m*Ef MK®

Thus, by making use of the relation,

bep(p'a) = , o 1 IV-(62)

it is natural for us to identify the last three factors
in Equation (59) as a damping coefficient Pep(u,a) similar

to its d.c. equivalent TQ;;
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(s} _ 1 o _
Pep(a) = Rep o5 Jg (@) IV-(63)
such that
— o -
Tep(H®) =T @) b, (1a) IV-(64)
and
r (ko) ~ T (a) IV-(65)
ep H-o ep

In this respect, bep(u,a) shall be named the quan-

tum correction factor such that

ar =1r°® -1)>0 IV-(66)
ep ep' ep

represents the correction for o > 0.
For the sake of convenience in future applications,
1. £y

e - PR A g [ R -
write Gewn b \s,%) explicitly;

ep

-1 M o 132
bep(s0) = [35(@ ]t =2inly HJS 4,00 b=t Juw,0)

(e®"-1)

W 2
- 2u e - 1" K4(u,a)]] IvV-(67)

The eptical conductivity ¢(®) in the form of Equation
(59) applies only at w2>9-rep. A more general form is ob-
tained when (wZ+ Fepz) is substituted for 2 in the denomi-
nator to make it consistent with the d.c. properties. We

thus have

QArethur D Little, Inc,
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o
T 2
1 1r° o ,0 (ig— + <}§E> 2 (u,) IV-(68
Tept® = L Ty ep /%7 w5 ) Pep(Hi@)  IV-(68)

which gives us the familiar expression for the d.c. conduc-

tivity,
2
2 n e
_ 1 % _ _e 1 -

when ® is equated to zero.
A quantity which has essentially the same physical

significance as the present bep(u,a) has also been obtained

by Gurzhi (1958), and is given by

04
1 2 v- v
o(p,a) = 1%‘&1'erv v* L4 b - eV:E-l IV-(70)
o

¢ =1 when p << 0<<1. However, Gurzhi's formula fails to
reproduce the correct temperature dependence for d.c.
resistivity and hence for heat capacity in the limit
B - 0 for arbitrary values of . It agrees identically
with the result of the present theory when p >>«.
Grineisen's formula for resistivity is compared with a
heat capacity curve in Figure 2, and a good agreement is
clearly shown.

A correct theory must be able to reproduce the time-
tested classical formulae, be they d.c. properties or

optical properties in the classical limit, and the correction
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factor, such as bep in the present theory, must approach

unity identically when g -0.

IV-E Corrections Due to0 Electron-Electron Cellisions
and Impurity Scattering

Contributions to infrared absorption by the processes
of electron-electren collisions and impurity scattering
have been investigated recently by various authors. Some
of the new developments are to be found in the werks of
the Russian authors, Silin (1958), Pitaevskii (1958) and
Gurzhi (1959). Their calculations are based on Landau's
theory of Fermi liquids('/5'/.,. A metal which is commonly
considered to be free of impurities may actually contain
impurities in the order of lO-4 or less. For such a metal,
the impurity contributions can be safely neglected except
at very low temperatures. It is well known that even a
small impurity content makes an important contribution to
the d.c. resistivity at very low temperatures through the
"Restwiderstand” of Mathiessen. As for the impurity contri-
butions to various infrared dispersion properties, the
investigations in a following chapter reveal that, even at
very low temperatures, the impurity contributions can be
negligible compared with the contributions by Helstein's
mechanism of bulk electron-phonon processes. This is in
contrast to common expectations based on our observations

of d.c. properties. It results from the important feature

QArthur D Little, Inc.
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of the present theory that the frequency-dependent damping
coefficient Fep(uﬂx) retains a large value even at very low
temperatures whenud >> . On the other hand, for ana which
does not satisfy u > a, Pep, at 0°K, decreases rapidly with
increase in wavelength, and thus the impurity and electron-
electron collisions become important.

Similar conclusions are reached for the electron-
electron processes. It will be shown that the electron-
electron collisions are insignificant throughout the free
electron spectrum, not only at ordinary temperatures, but
also at very low temperatures for many metals. Theoretic-
ally, the electron-electron processes make more contributions
at higher frequencies and at lower temperatures. Except for
transition metals and some multivalent metals, the correction
" amounts to a small fraction of the contribution by electron-
phonon processes in the high frequency region of the free
electron spectrum.

Thus, the above conclusions on the significance of the
two processes are not in exact agreement with the suggestions
by Silin (1958), Pitaevskii (1958), and Gurzhi (1959). They
suggest that these two processes may be the only predominant
contributions for most cases at low temperatures and in the
near infrared, and may be important at room temperature as

well for some metals.
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For our investigations on the relative magnitudes of
the contributions by the three processes, we shall use
Gurzhi's formula for the electron-electron collision

frequency

o
Toe (W @) = T ()b (1) Iv-(71)
£ _\?
b (1) =1 +<2,t> Iv-(72)

Fe:(a) is the d.c. damping coefficient and is well known
to be proportional to~T?2.

We may write it in the form,

1

P e (@) = Roe oF IV-(73)

o

Ree being a constant having the same dimension as ree'

The frequency-dependent factor given by Equation (72)

may be considered as a quantum correction factor in the
same sense that bep(u,a) has been treated as the quantum
correction factor for the electron-phonon collision
frequency.

As for the impurity damping, or the electron-impurity
scattering frequency as it is often called, it is sufficient
to remember that it constitutes a constant, additive quan-
tity Pg’to the over-all damping coefficient T'(r,2), and

is independent of both frequency and temperature (or nearly

Qrthur 2. Little, Ine.
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so). Thus, the over-all damping coefficient, with all of

its quantum corrections taken into account, now takes the

form,

- o
r(p,a) = I‘ep(u,a) + I‘ee(u,a) + Ty
Iv-(74)
= I‘o(a)b(“aa)
[o} (o] (o]
r“@pn +I° b + T
b(l.i,a) - ep ep ee ee M IV-—(75)

This is to be used in various dispersion relations
where the damping coefficient appears. For the reasons
that have been explained in most cases it will be satis-
factory to consider only the electron-phonon term Pep(u,a).
For example, rep alone yields values of low temperature
absorptivity of copper and silver at 4.2°K and A= 1~ 1.54
in excellent agreement with the observed values (up to
~ 2%). On the other hand, it is expected that Fep(u,a)
will not be sufficient to explain the observed properties
of those transition and multivalent metals in which the
interband transitions involve a non-zero momentum transfer.
Those scattering processes which involve a momentum trans-
fer IE;- E;l smaller than a certain non-zero minimum do

not lead to interband transitions.
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Finally, it may be noted that the significance of the
electron-electron collision term Pé: is directly related
to the presence of the Umklapp processes. In fact, it has
been pointed out (Gurzhi, 1959) that the electron-electron
collision term vanishes if the Umklapp process is not
present. The relative importance of the Umklapp processes
at low temperatures, as compared with the usual phonon
meidated processes may be understood in the following
manner. Consider that the average momentum transfer in
electron-phonon processes decreases liken <_§—> and the
density of phonons also decreases rapidly with decrease
in the average momentum transfer. The result of these is
the rapid decrease of resistivity, ~TS, as T is decreased
to OAK, while the electron-electron collisions, activated
by the Umklapp processes, have the well known«,Ta-dependence
in resistivity. This should, therefore, be even more true
in those transition and other multivalent metals in which
the interband transitions are very important. A non-zero
lower limit in momentum transfer is present for such
transitions.

On the other hand, except for the latter special cases,
the above statement is not necessarily valid in that range
of the optical or infrared spectrum where the quantum cor-
rection factor for eiectron»phonon processes increases

sufficiently fast with decrease in temperature to compensate

Qrethur D Little, Ine.
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for decrease in the d.c. quantity Fe;. For instance, for

metals, be they monovalent, multivalent, or transition

metals, which involve no non limit in

-zero lower

transfer, the quantum correction shows the temperature-
dependence to beﬂ--%;- while Pep(a) decreases as~ TS when
Ko >> K@ >> KT, thus compensating each other exactly.

This is an important consequence of the present theory.

IV-F Calculation of €(K, Q)

In Section IV-D, we have taken 0(u,X) in the form,

g =—: pEmn- Iv-(68)

where I'? in the denominator comes from Drude's classical
equation of motion for free electrons with r° replaced by

I'(n,@). Upon solving the same equation, the expression

for €(u,@) is obtained in the form,

l-e_ _ _®° 1 -
4T 4T @ + re v-(76)

where the denominator has an additional frequency-dependence,
besides 2, coming from b(u,a) in I(p,Q).
Unfortunately, unlike the classical Drude equation,

Equation (76) is inconsistent with the Kramers-Kronig

relation,
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l-e _ _ 2 J[ o (") dw' IV-(77)
” @'2- o
°
We shall calculate €(p,0) from Equation (77) for
both cases where (i) I‘ep(u,a) is the only important term

and (ii) (»,2) and I‘; need be considered. In any case,

Fee
an exact solution to the integral is difficult due to the
complicated structure of w-dependence in bep(u,a), and a
suitable approximation method has to be used.

When 0o(w) contains only rep' we have

2 + o o '
l1-¢ - . 0)0 f I‘ep bep dw
4T am® ' o '

oo (w'3+ (Pep)gbei) (@'2- o)
IV-(78)
a + o
_ Wy~ 1 L/" bep(x) dx
4T (Tep)? (x*+ [bep(x) I?) (x*-y%)

'
where x = (ch:___> and y = <7?—>, and where we have used
ep ep

bep(#/®) = b, (-1a) IV-(79)

ep

In order to investigate the property of (l1l-€¢) in the two

extreme limits, o® >>'(I‘;pﬂ)2 and w=-0, we use the relation

Qrthur . Little, Inr.
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1 _ (1) 1 1
(x%* b3 (x2- y3) ~ (y2+ b2 [x2+ pe " x2- ye:l

and we have

1-¢ % 1 e b (x)dx
am ar (Pep)a f(yz'i- b23) (x2+ b ?

IV-(80)
+o00

_ f b (x)dx J
(x3- %) (y%+ b?

-0

where the subscript ep has been dropped for convenience,
and b2's appearing in the integrand are all functions of x
and not of y.

Before attempting to solve Equation (80), it may be
remembered that bep(x) is a very slowly varying function
of x throughout the entire spectral range except when the
temperature is such as to give 1l << u << a in the very far
infrared, and that bep(u, @) is~ 0(l), being always greater

than unity for o >0.

In the limit of u >>q, Equation (80) now becomes

l-€ 0,2 B IV-(81)
5

where
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+ ®

& - }rf b(x) dx=ia f o (@) do vV-(82)

(x2 +b3) w,

In obtaining Equation (82), it was assumed that
b(x) = b(-x) and that b(x) does not have a singularity
in the complex x-plane.
We notice in Equation (82) that, when o(w) satisfies

the sum role

2 S
‘v—f"(w)d‘” - 1v-(83)
(o]

we simply have 5;; =1.

In the limit of p << 1, we obtain from Equation (80),

- o
1% _ % 1 ep IV-(84)
4T 4T (I‘p“) 2 B 2

where

+ o

§' <f dx b (x) } dx b (x)
B2 "“w (n+ b2) (x2+ b7 J (x*=1)(n+ b2)

The presence of n in the integrands implies that,
in solving the integrals by a contour in complex x-
space, the zeros of b(x) must be taken as the zeros of
the integrands and not as singularities of the integrands,
for all n 2 0. In this case, it is easily shown that the

second integral vanishes, and we have

Qrthur D Little Inc.
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5 e
—e_ . L (f —dx b(x) IV-(85)
g2 | (x2+ 12) (024 1) / w0

The integrand is taken to vanish at the zeros of b(x).
Upon comparing Equations (81) and (84), we construct
one possible form of (l-€), namely

l-€ we? 8¢p

4T 4T 0.)2+ (reg) 26 2 IV~ (86)

where Ezp and B may or may not depend on ®w, and if Se

is independent of ®, we simply have

=8~=l

)
ep ep

Taking sep and B2 to be independent of @ is essentially
equivalent to evaluating the integral (28) by replacing

b 2 of denominator by a parameter f2. In fact, such an
approximation is reasonably well justified for bep(x) is
a very slowly varying function of ® for all -wo< X < 4w,
except for the case of 1<p << a (which can occur at very
low temperature and in the very far infrared limit). The
parameter which best approximates the integrand may be
found by a successive approximation, solving the identity

equation
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B(a)

bep(i Bu,, o) IV-(87)
P (o]
- ep
FHe T ( KT >

where B(a) is independent of w.

By such an approximation, Equation (78) is readily
solved, and we obtain

2
l1-¢ . % 1

aT T 4T R+ T2)2 p2 Iv-(88)

which applies to all temperatures and w's except for the case

of 1 «< p <« @ in which bep can be a very rapidly vary-
ing function of ® although the over-all magnitude of
(o]
(I‘epbep) is generally very small.
It is seen that Equation (88) is identical with

Equation (86) when we put 8 =1 and take f as a frequency-

independent parameter. Further, the sum rule Equation (83)
is automatically satisfied.

The said statement that bep(x) has zeros but no sing-
ularities in the complex x- or ﬁ-plane can be understood
upon examining the complete expression of bep(ﬁ,a) in the

complex i-plane. From Section IV-C, we have the following

expression for bep (k)

b (i)

pl(g) +1ipi(m)

B o= p, +in,

QAethur D.34ittle, Inc.
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2 s
.- gul(e 11 cosZu2-1)+p2e2”151n 2p2> I .
b (w) = % L (1)
e + g
11,-, [kp(e®lcos2u, ~1)-p, e®1 sin 2u,1
+ J5 7 (M) 2n o
[uy (e cos2us-1) tuge 2Higin 2u5 ]

-((eulcosua—l)a-eaplsinu%>{%f(ﬂ)+2K£(ﬂ)

2" sinp, (eMicospy-1)

Re“lcosua—l)a—eaulsinpal

X (Jil(m + 2K£I(ﬁ>>}

where we have put

3 (Ba) = 37(A) + 1 s ()
- - I, = II, -
K (B@) =K (R) + 1 K “(r)

IV-(89)
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[0
I . I . n [(ey+e'y)e“lcosug-ezulcosm -1]
Jo (B) = &y (-0) = f d C 2
[
a 2
n [e®1sin2uy-(eY+e ) el lginu, ]

o (@)= 3y ")

i
\"
<
o
«

D(&-’-,}')

Yo=Yy H1 pR-1 01 -1]
kXg) = KI(-") _ f ny [(e’+e™7) e cospz-e“Lcos pp
it g vy (7-1) D(A,y)

- 2 (e +e~ Yy eH
KT ()= kI (-)= fy“dy [e*M1gin2ua-(eY+e Ve sinua] IV-(90)
a : (e¥-1) D(H,y)
where
D(,y) = [(e¥-eMlcos pp)2+ et sin® puo]

-y. 2
x [(eMcos pz- e )%+ elginfu,]

Similarly, the expression for bII(ﬁ) is obtained upon
replacing (Jri[, Kg) and (JnI,I,KnII) by (JnH.Knn) and (-JnI,+K¥1).
respectively.

A detailed study of the Expressions (89) and (90)
shows that b({1) has no singularity, but has an infinite

number of zeros on the real axis of the upu-plane at

Arthur D Little, Fnc.
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n
= +4 —
= 1 2“

n=1,2,3, ....

This implies that in obtaining the solution (88),
we must make sure that only those values of § which meet
the condition
hBt S

o IV-(91)

(X3

n=1,2,3,4, ....

are considered. We further notice, in Equation (87) which
defines f, that any § which is found from Equation (87)
satisfies the condition (91) automatically. The solution
to Equation (87) is obtained upon putting p, = 0 and

u2==u06 into Equations (89) and (90). We thus have

B(a) by (1H6B)

1+sin2 (pof) I,. =
HoB 30 (@) [tan(%s) % (kob)

.. l-cos(uef) / 1 T
+ ( uoh) cos(l-loéc)) - (9 + zx,,)] IV-(92)

where we have used the relation

Tn (1B ) _ Kp (iuoB)
JnI( il-’ooé ) K&(iuoé )

= -2 tan(pyf) IV-(93)
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and

04 .
gl p) = f y"dy[(e”-cosuoB) (cosioB-e M)+ 81 (uoB) ]
R . [(e¥-cosnoB) 2+ sinuoBllcosnoB-e )2+ sin?(uof) ]

I -
K, (inB)

a
f ydy[---] IV-(94)
o (e¥-1)[---1[---]

Evaluations of B(®) in the two limiting cases, a>>1 and
o< 1, are simplified considerably.

In the limita >> 1, we have

JnI.z_ cos(uoé)n![l-

e

_&m cosm+1 (uoé):l

(m+2)
m=1
IV-(95)
© m-1
I ] - 1 1 1 s+1 -~
Kn; n.cos (}J.OB )[;ﬁ'ﬁ' + Sm +z (—m;;)—ﬁ_pf <1-Zs cos (uoB)>:|
m=2 s=1
For n=4 and n=5, it is safe to take only the first terms
of Equation (95), and we have
Jl 120 B L B
5 ~ cos(uoB) ; Ja ~ 24 cos(uyB)
I 3 -
Ky ~ 7~ cos(poB) IV-(96)
Jg_'\. 124

On the other hand, in the limit @ << 1, it easily follows
that

Qethur D %Little, Inc.
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-+ -
II o an : cos ( uoB)
n 8 (n+1 3
(n+1) sin4<“°a>
2
P cos( )
Kn = —gq IV-(97)

cin® < HZQB>

: uoé '%t— (m =0,1,2, ...)

W

J = %o

Thus, the identity Equation (92) is reduced to the follow-

ing two . corresponding to the limits, @ >1 and o<« 1,

respectively.

- 5 )
“—_—“(“:i) = (1+ sin® p B )[sin(pf )+ _S&%El (1-cospeB)] IV-(98)

(HoB)? _ 1+ sin®uqB)

Ho - 4 sin® Qi%§>

These equations are in a numerically solvable form

[3 0Psin(uB)+ Egﬁ (1-cosuoB) ] IV-(99)

provided that we know the wvalue of By and hence I‘e;(a) .
The solutions to these equations may be obtained with the

help of our formula for Pe::(a) . According to Equation (63),

it is seen that

1
uo'\. ?—<<1

in the limit g >>1, and the only possible solution to




-103-

Equation (98) exists when (u,f) << 1. Thus we find

Bl : a>1 Iv-(100)

On the other hand, if o <<1 (high temperature), Equation

(63) tells us that Tep ¥T and po~constant such that
Mo’\'O(l)

According to Equation (85), b(x) and § are ~ 0(1).

We thus find, from Equation (99),

- 1+ Sina(uoé)

. kB
4sin?2 < 5 >
where (u )~ 0(1) <% .

According to the result shown in Equation (100), the

a<l IV-(101)

denominator in the dispersion formula for (1-€) is to be

taken as

1
(wé + (I‘:p)2>

when a >>1, while that of g(w) is to be taken as

1
o + (r)2(B)2

with B> 1.

In the forthcoming applications of the theory to
practical cases, we shall in general take B as a temperature—
dependent parameter to be determined by fitting theoretical
equations to experimental curves, while bep is calculated

theoretically.

Qrthur 0. Little, Jue,
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IV-G Calculation of €(u,a) with the Electron-Electron

Collisions and Impurity Effects taken into Account

We have thus far considered only that part of dis-
persion which is contributed by the bulk electron-phonon
processes. For a more general calculation of €e(p,a), we
must use the formula (74) and (75) in the Kramers-Kronig
relation. Aside from this, the calculational procedure is
similar to that of Section IV-E.

For the sake of convenience, we define the following

notations:
s - oz o o . - o o o
Qo(ax) = (PepBep+ Fee+ Fé> 3 89 <}epbep+ ree+ I¥>

-1 2
[nee(a)] =<—§-§—> ro (@ IV-(102)

_ 7] ¥ Q
i - {ira g Mz ]}

Then, the dispersion denominator in o(W,a) can be put into
the form,
@2+ 8F) (02 62

(0®?+T 2) = o IV-(103)
ee

and we have
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(w) WS
u)oz Qee QO + Qee >

o(p,a) = IV-(104)

4T 0%+ 2.2) @® + 0.2)

where Q's without bars represent quantities of Equation

2 P a -
(102) with Bep replaced by bep(u. ), where Bep is a
temperature-dependent but frequency-independent parameter
similar to P assumed in Section IV~-E. A close examination

of O+ in Equation (102) shows that

8,.,0, >0

t +

In solving the Kramers-Kronig relation, we shall again
use éep in place of bep in the denominators. This approxi-
mation is just as much valid as the same approximation that

was adopted in Section IV-E. Then we have

IV-(105)

+ (no<<n'>+ “"2>
1-€ _ _ %2 a 2‘jr , oo
4T 4T ee (@'2+ 2, (0'2+ 2_2) (0'2- o?)
-
+ <Q ] miz
.2 o(@")+ —
~ - (2] ) Zf dw’ — - ee
4T ee (0.)'2+ Q 2) (LO'2+ Q 2) (waz_ wz)
- 0

This may be solved by taking the contour integral in
the upper half of the complex w'-plane enclosing the poles

on the Ijp-axis atw'= +ifl, and +ifi., the semi-circular

Qethur D Little, Ine.
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arc extending from w'= +* to +i» and then to -«®, and the

contour being indented above the real points at o'= % o,

We thus obtain

2 2
1€ B flee
4T 4T (042 - 0-2)
(no[iﬁ-] _ M. ) <no[1§-] N
Q. Qee Q4+ o/
X — - - IV-(106)
o® + -2 o® + 042

In general, we have

Q -
Qo «<1 ; Qw <« 1 IV-(107)
ee ee
for all o in the free electron region of spectrum, and
thus
3 nee
Qi = (ﬁo >
5.2 . f 2 2
Q4 %) = nee
so that Equation (106) can be reduced to the form,
1oe @ 1 . fo(ifo) IV-(108)

4T 4T 02 + 02 a,
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® 2
R )
o p, @) = IV-(104
4T %+ 22)@?® + 0.2) ( )

where Q's without bars represent quantities of Equation

- o -
(102) with Bép replaced by bep(u, ), where Bep is a
temperature-dependent but frequency-independent parameter
similar to P assumed in Section IV~E. A close examination

of 8+ in Equation (102) shows that

In solving the Kramers-Kronig relation, we shall again
use éep in place of bep in the denominators. This approxi-
mation is just as much valid as the same approximation that

was adopted in Section IV-E. Then we have

o <oo<w'>+ ‘”"")
1-€ w2 f 2
dwo' -

= [o] 2 ee
47 4T ee (@'2+ 0,2) (@'2+ 0_2) (0'2- @?)
IV-(105)
2
2 +o (rotary+ 32
By - o (4] 2 f do! - — ee
4T ee ((D'2+ Q 2) (wv2+ Q 2) (msz_ 0)2)

This may be solved by taking the contour integral in
the upper half of the complex w'-plane enclosing the poles

on the Ijp-axis ato'= +ifl, and +ifi., the semi-circular

QAethur A Little, Inr.
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arc extending from w'= +% to +i® and then to -%®, and the

contour being indented above the real points at w'= % w.

We thus obtain

2 2
1-€ o o nee
4T T 0+2 - 2-3)
(ﬂo[iﬁ-] _ & > (ﬂofiﬁ-] _ 0y
X — - p. IV-(106
o + §-2 ®® + 042
In general, we have
Q -
°© w1 ; ® e IV-(107)
Q Q
ee ee
for all w in the free electron region of spectrum, and
thus
o nee
Qi = (50
@2 - 8.2 = a2
so that Equation (106) can be reduced to the form,
1-e % 1 . S0 (ifl0) IV-(108)
4T aT w2 + 80,2 Q

o

—

e
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where 8, (if)) is real since bep(lx) = bep(-ix) and the para-

meter Bep is found from the identity equation,

g = bep(i;)
IV-(109)

= a o =z o o
{ =BTy B Tt Iy

which becomes identical to Equation (92) in Section IV-F

when P;L and kaare small compared with the electron-
phonon contribution. We found previously that, at low

temperatures (@ >> 1), we have

o -
ep <1 H Bep”l

r

while P;;(a) decreases relatively slowly, like A, T2, as T
is decreased and T'° is the constant, "Restwiderstand" term,

so that, in this limit,

o oy _ -
g ip (T + T =¢ Iv-(110)
independent of 8. Therefore, fortunately enough, we need

not be concerned with evaluating f at all at low temperatures

and (l-€) is simply given by

1- € _ ®o? 1 —_
4T aT P 4(Tgy +T))2

ta>»>1 IvV-(111)

QArthur 2. Little, Inc.
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On the other hand, at not too low temperatures, reg

and I‘; are both much smaller than Pe:p B so that the expres-
tha

csion for (l-¢) is nearlv th
ion for (l-¢) 1s nearly tf

e same as

ot

obtained in
Section IV-F,.
Similarly, the properties indicated in Equation (107)
enable us to write down ¢ in a reduced form,
® 0 (,9)

_ o ( ?
- = 1+ —22 IV-(112)
4T o +[8,n,a) ]2 \ fio0ee >

which is to be applied whenever Equation (108) is applicable.
It must be remembered that the electron-phonon part of
f,(#, @) in Equation (112) is not necessarily smaller than
(q;;+ r;) because bep(iga), instead of f, is multiplied to
Pe;(a) in 9,. In fact, it is found that the rapid decrease
of Ié; (i.e., like ~TS5; with decrease in T is exactly compen-

s
of the free electron spectrum.

1
sated by the ~ —z -dependence of bep(p,a) in certain parts
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Chapter V

Absorptivity, Reflectivity, Optical Size of
Condution Electrons, and Other Properties of Metals

V-A Basic Formulae from Chapter IV

The formulae for optical conductivity o(w) and dielectric
constant e(w) were obtained in the preceding chapter, first by
considering the contribution of only the electron-phonon Pro-
cesses, and second, for the more general case where electron-
electron collisions and impurity scattering also need to be
taken into account.

In the applications that follow, we shall use the general
formulae obtained for the second case.

When the quantity (—421%> is not neglected, the expression

2
“ee

for o(w) and €(w) take the form

- 2 % ) v-(1)
(02
[1-e(w)])= 9‘2; G (o) v-(2)
where
0,2 = o+ 02
8 = o+ G2
, o
1 fofee

@
Q
g
I
'—l
+
i
N

Arthur 2. 3Little, Iur.
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2
1 e 2()

G (@) =
e ()
e}

o = Fe(; (@) bep(H,a) + reoe(oz) + Ty

v-(3)

L)
|

o =T (@) B, (@) +T (@) +Ty

The multiplicative factors, G; and G., are corrections
due to electron-electron collisions and, in general, are of
the order of unity. The entire temperature-dependence in
Equations (1) and (2) appears only through Qo and Q. Only
s shows frequency dependence through thé term bep(u,a).

The formulae (1) and (2) are more general than Equations

2
IV-(112) and IV-(108), since the latter two neglect <lgte )
which is small compared to unity. In general, _ﬁﬂ___ is
ee
small compared to unity throughout the entire free-electon

spectrum (i.e., AT 0.5 ~ 1.0u) for all temperatures, so that

G (w) = 1
vV-(4)

wa
GO.(O.)) ~ (]_ + m—"o ee)

In order to justify this statement, let us compute <—f%;f>2
for a metal which shows a relatively large contribution of
electron-electron collisions, and see at what wavelength the
relations of (4) are not valid. For this purpose, we write

(o]
Pee(a) as
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o = ———— -
Toela) =R o2 V-(5)

where Ree is independent of both T and w. Then, we have

( o >2 _ _3.84 X 107° <Ree 2 V-(6)
gee 12 @2
__2mc
: A= o (1

For most metals, the values of Ree range from
~101°% sec™ to ~10*2 sec™® while ® is of the order of

~ 102 (°K). Therefore, for 8 = 300°K and R = 1012 sec-1,

2

the wavelength which gives ( ;2 :>=s0.l (~10% correction)
ee

is found as 0.2~0.3u, which is already outside the free

electron region of the spectrum. On the other hand,

<—Q—;’a——> is not necessarily small, since we have <f—> >>1
oY ee

in the near infrared.

In order to predict values of various dispersion
properties such as the optical constants, absorptivity
and reflectivity, etc., at different temperature by know-
ing the values of these quantities at one temperature, it
is sufficient to specify the temperature-dependence of a2,
and 50 in addition to the values of the constant parameters

entering in 9%, o and Qee' At not too low temperatures,

Qo and fo reduce to
9. ~I'° ()b__(u,a)
o ep ep '

- o . .-
Q, =T (a-)Bep(a)

Qrethur D Little, Ine,



-112-

where éep(a) and bep(u,a) are given by Equations IV-(92)

and IV-(67) respectively, and r‘e;’)(a) is given by

o - S -
ep(oz) =Ry o5 Js (a) v-(7)
In particular, foru = (—%ﬁ,’—) >a= <?,—>, we have
~ -1 o — 1 v-(8)
b, (1) = B (@) 57,9 [ Jg (@) +%0° +af RO ]

This relation applies in the spectral range to A < 10g.

~

At very low temperatures (a>> 1), we may use

o (o]
=~ (\r‘ee(a) + PM) ; T> 0
r° : =
=~ M T 0
9, ~ i, pK « v-(9)

where only I‘ez retains a temperature-dependence of » T2.

As the numerical computations in a later chapter will
R
show, the residual phonon term (Tgp_> generally has a

value which is comparable with the room temperature value
o

of (Fep ep) and hence is much larger than 1" and T__.

This is clearly in contrast to what might be expected from

the classical theory and is also in contrast to the sug-

gestion by Pitaevskii (1958), Silin (1958) and Gurzhi (1959)
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that, at low temperatures, only the electron-electron col-
lisions and impurity scattering may play a dominant role.
On the other hand, it provides strong support for Holstein's
suggestion (Holstein 1954) that the bulk electron-phonon
processes may make a large contribution to absorptivity
even at a very low temperature.

The quantity, ‘Ee' entering in the correction factor
Gg(w) is independent of both frequency and temperature. For
convenience in practical applications, we write G4y of

Equation (4) into the form

R +6
= ee 5.29 x 107~ _
Go(a)) (l + a, 2 o2 v-(10)
: A in u

It is easily seen t (w) remaing of the

order of unity even at very low temperatures, since

according to Equation (9),

Ree  5.29 x 107®

(Gg-1) = 10 Rep T i u>> 0
V-(11)
Ree 5.29 x 10
= r° \2 @2 3 T=0K
M ' H<Lo

The first equation is not large since Ree<K Rep and the

second is not large since 12 is itself large.

drthur D.4ittle, Inc.
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In the following part of this chapter, we shall compute
various dispersion properties for different spectral ranges
applicable at any temperature. Discussion of these proper-
ties for different ranges of temperature is emitted since
the preceding discussions on the temperature-dependence of
Qoy Qo” and G; are sufficient to specify the temperature-
dependence of other dispersion properties.

In what follows, the free-electron spectrum is divided
into four segments: [i] w® << (Zoz,fzoe << w027 [1i] o = Qi,ﬁs << a)027
[iidi] Q(‘;“,ﬁoe << w? << woz: [iv] «® £ wf, where w, is the fre-
quency characteristic of the electron plasma such thate > 0

for @ >w, and €< 0 (free electron region) for o < w,.

V-B Optical Constants, n and k

The fundamental relations between the optical constants
(n,k) and the dispersion properties (o,¢) were derived from
Maxwell's theory of electromagnetic fields in Chapter I1I.

They are:

e(@) = (n®- k%)
vV-(12)

o) = -BEE

where (n,k) constitute the real and imaginary parts of the

complex index of refraction N(®);

N(®w) = (n - ik)
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that, at low temperatures, only the electron-electron col-
lisions and impurity scattering may play a dominant role.
On the other hand, it provides strong support for Holstein's
suggestion (Holstein 1954) that the bulk electron-phonon
processes may make a large contribution to absorptivity
even at a very low temperature.

The quantity, ‘ge’ entering in the correction factor
Gg(w) is independent of both frequency and temperature. For
convenience in practical applications, we write G4 of

Equation (4) into the form

R +6
- ee 5.29 X 10 _
Go(m) —(l + a, 2 02 > v-(10)
: A in M

It is easily seen that the value of G; (n) remains of the
order of unity even at very low temperatures, since

according to Equation (9),

Ree 5,29 x 107®

(Gg-1) = 10 R Y s omu>>a
V-(11)
R 5.29 x 101
= I‘eg 2 82 y T = 0°K
M ‘ H<<o

The first equation is not large since Ree<K Rep and the

second is not large since A2 is itself large.
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In the following part of this chapter, we shall compute
various dispersion properties for different spectral ranges

applicable at any temperature. Discussion of these proper-

P a2 - L ket 2

i £ + = am- - :
ies ranges O temperature is emitted since

the preceding discussions on the temperature-dependence of

go, Qo” and G; are sufficient to specify the temperature-

dependence of other dispersion properties.

In what follows, the free-electron spectrum is divided

into four segments: [i] o® <« QOZ,K-ZOE << aooa; [ii] o® = Qi,ﬁs << a)027
[iii] 95,502 << WP << cn02 : [iv] o2 £ moz' where w, is the fre-
quency characteristic of the electron plasma such thate > 0

for o >w, and €< 0 (free electron region) for o < w,.

V-B Optical Constants, n and k

The fundamental relations between the optical constants
(n,k) and the dispersion properties (o,¢) were derived from
Maxwell's theory of electromagnetic fields in Chapter 1I1I.

They are:

2_ k2)

It

e(w) (n

vV-(12)

o) = -REE-

where (n,k) constitute the real and imaginary parts of the

complex index of refraction ﬁ(m);

N(w) = (n - ik)
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Upon inverting the relations of Equation (12), we ob-

tain (n,k) in terms of (€,0) as follows:;

[

o= IE;LMmH{l+<“m>.}—y

v-(13)

k =. JE -e(w)+{l+<m°>} 1

where-é(w) has the meaning,

+1 e >0 (o,<w)
6(w) = {
-1 € <0 (0> o)
and where € and o are to be substituted from Equations (1)

and (2).

Substitution of Equations (1) and (2) into Equation

1 ®p
[o4 c‘ F: e
= " [ (bep-l) ——-—p——Po + 1] v-(14)
where
. @ 1 mee®
°d.c. ar T° ° m* T°

V-(15)

Arthur 0. Little, Inc,
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At not too low temperatures, we have I‘e(;‘v I‘o, and

(¢
n= k= _—3.C. b - v-(16)

At very low temperatures,

(o] (o] o
I” = Tgg + Ty

independent of w, and

o T \S
r R_.. X 124 (——— v-(17)
ep ® Rep P >

[ii] o®= 002, 88 << 0,2

V-(18)
1 Wo o o 2\
k = T_Z' <——ﬂ2 > [{l + <_——{D N GO'> } + l:r
[1ii] 9, 8 < 0® < 0,2
a
n = !,—‘i"‘;—a—ﬂ—a‘c : «(A® + constant)
V-(19)
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where 30 and Eo. represent 8, and G, with bep(u,a) replaced

by Bep(a) given by Equation (8).

Cliv] 0?5 o

e (TP [ G (wwa)}” J

V-(20)
[ wy2- 0P ?f G(7 ( ¢
k=(w2 ) [{1+( ) - wz) 1
In particular, when w= w,, we have
OGO'
ne k= F ( > <<l v-(21)
€ = 0
~
B0
4T

Equations (14)~ (21), for n and k are plotted

qualitatively in Figure 4 as functions of h

Qethur D Little, I,
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V-C Absorptivity and Reflectivity

In general, absorption in the free-electron region of
the optical spectrum is attributed to two separate mechanisms;
bulk process and the anomalous skin effect. The bulk absorp-
tion includes contributions by the electron-phonon processes
that was suggested by Holstein (1954) and is the heart of
the present theory, as well as by the usual electron-electron
collisions and impurity scattering. The theory of anomalous
skin effects was first offered by Reuter and Sondheimer (1948)
and was later elaborated by Dingle (1952, 1953) and Gordon and
Sondheimer (1953). Theories which formulate dispersion with
consideration of all three, anomalous skin effects, electron-
electron collisions and impurity scattering simultaneously,
have been developed by Pitaevskii (1958).

Further attempts to formulate the bulk electron-phonon
processes have been made and a formula for infrared absorption
has been obtained by Gurzhi (1958) by solving the transport
equations for conduction electrons.

The infrared absorptivity obtained by Gurzhi applies
mostly in the near infrared, and agrees exactly with the
result of the present theory in the same limit of the free-
electron spectrum, although the calculational methods adopted
are different. The present theory applies to virtually the

entire free-electron spectrum for all temperatures.
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Denoting the bulk absorptivity, skin absorptivity, and

total absorptivity as AB‘ AS' and A, respectively, we have

A=A_ +A v-(22)

The total reflectivity R is simply, (1-A). The skin
part of absorptivity is important only at very low tempera-
tures, and will be neglected at all other temperatures. The
theory of anomalous skin effects was proposed originally in
order to explain the low temperature absorption in metals.
That skin effects alone cannot explain the observed low
temperature absorption has been made clear in a number of
papers, and it was to bridge this gap between theory and
experiment that Holstein (1954) offered his mechanism of
bulk electron-phonon processes. The results of the present
theory not only support Holstein's suggestion, but also show
that such a bulk mechanism, for many metals, is far more
important than the skin absorption even at very low temperatures.

It is well known that, when the anomalous skin effect
cannot be neglected, it is diffuse rather than specular
reflection of electrons at the metallic surface that contri-
butes to low temperature infrared absorption. Thus, we shall

use the well known formula,

_ 3 ’F _
AS—- 2 2 V-(23)

as the absorptivity due to the electrons scattered diffusely

QArethur D ALittle, Ine.
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at the surface, where UF is the Fermi velocity of electrons.

We obtained expressions for the optical constants
(n,k) in Equation IV-(13) as functions of the parameters
€(w) and o(w). Therefore, in order to obtain absorptivity
or reflectivity as a function of (€,0), we shall make use
of the relation,

4n
= Ty iee =
AB mi1)® % v-(24)

where (n,k) contain contributions from the bulk alone.

Thus we readily obtain the relation

2 0@ {; + ( ) Ts v-(25)
[[G(w)+{1+< >}T {H( >} ~f2—le——1|

Upon substitution Equations (1) and (2) into the

Ap”

above, we obtain the following results for various spectral

ranges with o < w,;

[1] o® << 042, {2 << of (Generalized Hagen-Rubens formula)

B Mo
e, r ° G
\4 ep
= e + - -
2*/ 9d.c. <l r° (bep l)> v-(26)

where the same remarks apply to the correction factor to
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the right as in [i] of Section IV-B. This correction fac-

tor can be significantly larger than unity at low temperatures.
At not too low temperatures, we have re;==r° so that the
correction factor is simply b;i. Even at room temperature,

this can introduce a correction in the order of 10~ 20% if

- (2

Equation (26) is exactly the Hagen-Rubens formula
when the correction factor is equated to unity. The original
Hagen-Rubens formula for réflectivity has been found to agree

well with observed values, and our formula for reflectivity,

ey
=1 -2 j—a—'—' <l+ (b -l)> v-(27)

is expected to improve the comparison with the experiment.
For this reason , we shall call Equations (26) and (27) the

"generalized Hagen-Rubens formula",

[1i] @®~ 0,2, 8,2 << 0,2 (LS 10 at T = 300°K)

[ty
ey,

v-(28)

Ay~ /2 (.mz_>

QArethur D Little, Fur.
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[iii]

2 a2 2 2
2,2, 0,2 < 0® «< w,

N~

Qo)m / m* ~ooA
2y~ 2(o )& - e @ v-(29)
where
~ ~N i
NG = 0, +
(BoGq) = o+ g
= G*°% +T°%+ r°s 7#fl{> V-(30)
- \epe ee M ee
oN (1)2 °
~ G‘ b + ) > : T> 0K
ep ep ee

At very low temperatures and for K

reduces to

Rep

10

m*

e +5.29 x 10°°
e

(

Ap =

>> a, Equation (29)

e V-(31)
2 a2 -
- : A in u

The skin term As of Equation (23) must be added to obtain

the total absorptivity.

This formula will be used repeated-

ly in the future in specific applications, and it will be

shown that it gives values in excellent
experiment. A very interesting feature
the absence of temperature dependence.

R
nant term represented by <i§$ does not

agreement with the
of Equation (31) is
Further, the domi-

contain A-dependence.
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The values of Rep and Ree are in general of the same order of
magnitude as F;; and Ié:, respectively, of room temperature
so that the quantities within (--~) represent a large value
while, classically and from some existing quantum mechanical
theories, the electron-phonon term is expected to decrease
rapidly, like ~T%, when T is decreased to 0°K.

Now, let us compare the magnitudes of the two terms
with the help of some typical numbers. Many metals have
Rep = 10*3~ 10'° sec™! while R, is of the order of ~ 10°
~ 10 sec™ and, for an exceptionally large case,~102 sec -1,
Thus, for Rep= 10'* sec', R__= 10¥sec~*,8 = 300°K, and

ee
A= 1u, we have

R

—-ep_ _ 1013

-1
10 secC

R
5.29 X 106 12?92 = (0.06) x 1033sec"?

In this case, the electron-electron collisions intro-
duce a correction of about~ 6%, while, if we take R o=
10'2sec™ , the correction is as big as 60%. Thus, it is
clear that, while the electron-electron collision plays
a relatively small part even at very low temperatures for

many metals, it can be quite significant for some special

cases.

Qethur 0. %Little, Inr,
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vl o2 Sw?

2[{1 +(_'(‘Z_EU§ (——ﬁ—)}" 1 ]"
(16 oyt e e T ()]

=

v-(31)
In particular, at «®=~ oZ, this is reduced to
g %
_ ,3/2 ?foG(‘”oZ _
Ap~ 2 < o, v-(32)

At such large frequencies, the second term in Gg(®)
due to electron-electron collisions may become predominant,
especially for those metals which have large values of Ree'

The bulk absorptivity and reflectivity are plotted
qualitatively in Figure 5, where the significance of the

correction factor Gy(®) is shown in the high-frequency

limit.
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V-D Temperature-Dependent Scattering Cross-Section, Optical
Size of Electrons, and the Virtual Mass of Light Quantum

From our formulae for temperature-dependent optical
constants (n,k) or (¢,€), we can define the temperature-
dependent scattering amplitude, scattering cross-section per
electron, and hence the optical radius of the electron. By
scattering cross-section we mean the effective cross-section
of a conduction electron which the external electromagnetic
field sees for interaction, including both pure scattering
and absorption. 1In this sense, it may also be called "the
dispersion cross-section per electron". If such a cross-
section is denoted as cs(w,T) measured in cm?®, the optical

radius of an electron, as, is defined as
ra®=¢ V-(33)

and is measured in cm.

The concept of "virtual mass of a photon" in metals
(and also in dielectric media as well) is a rather new one
and its definition is helpful in a qualitative discussion of
infrared dispersion in metals. A light quantum of frequency
®, when it enters a medium with index of refraction n > 1,
behaves as a light quantum of frequency, (—§—><:m, as if it

suddenly gained a nonzero mass mp and that

Jethur D Little, Inr.
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2 @ 2 2
o = n + K¢ v-(34)
P
mEc
fp T <ﬁ >

This is a relation which is often used to obtain the
expression of n in dielectric crystals, and is not anything
particularly new. A quick glance at the relation reminds
us of the familiar expression for relativistic energy of a
particle in terms of kinetic and mass terms. Thus, we may
conveniently define the first term of Equation (34) as the

kinetic term and the second as the mass term, so that

m Ko 'Jna - 1‘

p 2 n

>0 V-(35)

Likewise, we may treat the mass term as a potential term

such that an increase in mp and hence a decrease in the
kinetic term correspond to an increase in a potential of

some kind. In fact, the physical piture of some dispersion
properties, at least in the free-electron region, can be
better understood in terms of such an argument. For instance,
the increase of reflectivity of light by a metal with increase
in index of reflection may be explained in analogy with the
increase in backward scattering of a particle by an increased
positive potential step, and hence a smaller kinetic energy
in the new potential field. We are essentially applying our

knowledge of the elementary particle picture to optical
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dispersion in contrast to the usual practice of applying
optics to massed particles.

We shall now calculate various properties explained
above with the help of the relations of Chapter II. Upon
combining Equations (1) and (2) with the dispersion rela-
_tions for n and k of Chapter II, we easily obtain the
following temperaturefdependent expressions for the real
and imaginary parts of the scattering amplitudes, (Ref)

and (Imf) ;

= o (&) [ o TP

¥ % V-(36)
2 [~ 2
= o ek i) ATC
InF = r* <—“’o> N 2]e] 1+ {l+< — >} ]
where r; igs the effective classical radius of electrons
and is related to the usual classical radius of electron
r, as
2 m
* = ——e—— = o] -
o m*c? ( m* Yo v=(37)

where mo is the rest mass of an electron.
The scattering cross-section Oy and the optical radius

as are obtained from the usual relation,

= 2 _ 4T¢c . & -
o = Ta_ = —G— InF v-(38)

Arthur D ZLittle, Inr.
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The mass of a photon mp is computed from Equation (35)
by using the formulae for n(®) that were obtained in Chapter
IV-B. Here again, we shall compute these quantities for various

segments of the free-electron spectrum when o < w,.  They are:

- 2 2 o 2 2,
LL] o K 8,75, 0,° <K 0,3

. 3 \X
RF = I F= N2 r¥ (-tn—za'n—>

(o] [o]
0 ~ 47 N2 r* (—2—-—“) : vV-(39)
s ' € To wo = 8y
a = % ( ri"\o >” (é» )k v-(40)
. N ‘
m = %“’r V-(41)

where 1, is the critical wavelength

We notice that mpc2 is nearly the entire photon ener-
gy i® meaning that, in this part of the spectrum, the photon
may seem nearly motionless to a Fermi electron of speed
P ~10%(cm/sec), and hence there is a greater probability
of encounter, on the average, between the photon of mass

m_and the conduction electrons during the period of

__%_r_ (second).
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il o®= 8,2, 8,2 << 0,2

2
= ' v (:)]

SO SO
S0 5 SRS
oo 22753 (Y[ fr B oY P T voas
- () G )[1+{1+(“°”’ f T vetes

2
InF =~ N2 r* -2 [{14—

o]
aA

O
(M 1]

[111] 842, 8,2 < @® << ap?

= o \2 (bo& ~ _
RoF = 2 r; <_a$_> [% —_QFQ—GO' - l:l V-(46)
InF =~ 2 r* (—:;;—“’) v-(47)
m o o

o .= 4 r*)

s * 2 v-(48)
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ag NP (r; }‘o) vV-(49)
m_ = ﬁé” [l - 4(——3‘-‘%—-—\2] V-(50)
P c L \ OflgGy / J

It is seen that o and a, are independent of frequency
and temperature while we found previously that absorptivity
is independent of frequency in this part of the spectrum.
Formula (50) for mp necessitates defining a frequency @

such that mp= 0 at o = @ given by

= —;19—%;—— > 0 v-(51)
-

ee

O
Strictly speaking, reiation (50) is wvalid only for ()
smaller thancnm. This corresponds to the point where the
index of refraction is identically equal to unity and the
light quantum behaves as though the bulk of the metal is
not different from vacuum. Photoelectric processes which

may be important at such a frequency have been neglected.

[iv] a? £ wo?

ot (RN b G CEEY [

V-(52)

() [l TGS - ] v
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| o, ~ 23/2(r* A) (1 + % A“’><a‘° "'j’ V-(54)

cy = (B (o) (B v-(55)

where Aw= (w-w,) .
When @ >>w, ,both 9 and ag approach very small but

constant values of the order, (—-%2;—) and <._‘§;:e_> !‘5,
respectively, and vanish identically when there is no Um-
klapp process presenﬁ. This is, of course, not strictly
true when we consider the contribution of bound electrons
which are important in this part of the spectrum.

The scattering cross-section o is plotted against A
qualitatively in Figure 6. The M\-dependence of m_ is also

shown. The general pattern in the \A-dependence of Tq and

( f> may be compared with those of absorpt1v1ty and

reflectivity, respectively, of Figure 5.

Qethur 2. %ittle, Ine.
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Chapter VI

Paramagnetic and Ferromagnetic Transition Metals

VI-A Introduction

The calculation presented in the preceding chapters
depend on the assumption that the energy surface is spherical.
This assumption has been shown to work well for a variety of
nontransition metals. However, for many multivalent and
transition metals which have been investigated from a theo-
retical point of view, the surface of the Fermi level cuts
through two or more Brillouin zones, and it does not resemble
the spherical shape we considered in Chapters IV and V.

In particular, the study of ferromagnetic and paramag-
netic transition elements represents a special problem from
a theoretical point of view, since the metallic properties of
these metals have a rather peculiar dependence on the place
of the element in the periodic table. These special proper-
ties are exhibited in the observed temperature dependences
of resistivity as well as of various thermodynamic properties.
Behavior of the ferromagnetic transition metals represents
an even more special case. Although these metals have been
studied rather extensively as toﬁtheir d.c. electrical proper-
ties based on the quantum mechanical explanations, very little

work has been done on the optical and infrared dispersion
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properties. Some of the qualitative features of the optical
properties of transition metals and transition metal alloys
were presented by Mott (1936, 1935).

In the transition metals such as Pt, Pd, Ir and Ni,
the s-band and d-band overlap and the Fermi level falls in
this overlapping region. The most widely investigated metals
are the triad, Pt, Pd and Ni, which come before Cu, Ag and Au
in the periodic table, and are all face-centered cubic lattices.
In palladium, there is about 0.55-0.6 electron per atom in
5s states and the same number of holes in the 4d states. 1In
pure platinum, there is about 0.55-0.6 electron in 6s states
and the same number of holes in 5d states. In nickel, there
is about 0.55~0.6 electron in 4s states and the same number
of holes in 34 states. The density of states p(E) of 4s and
3d states of nickel is schematically illustrated in Figure 33
and are compared with 4s and 3d states of copper. The large
value of energy density of d states compared with s states
is qualitatively indicated, and it will be shown that this
leads to important consequences.

Some of the important physical consequences of the

- presence of positive holes in the d-band are: (a) the

ferromagnetism or high paramagnetism shown by these metals;
(b) the low electrical conductivity and anomalous behavior
of resistance both at high and low temperatures; (c) the

low reflection coefficient for long wavelengths; and

Arthur M. Little, Inc.
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(d) the high electronic specific heat. Although all the
above properties are mutually related, only the first three
will enter explicitly in calculations of optical and infra-
red dispersion properties. In the language of the optical
dispersion theory, the low reflectivity for long wavelengths
is the direct consequence of the low electrical conductivity.
This may be explained on the basis of the Hagen-Rubens fofmula

for reflectivity R that is applicable at long wavelengths,

ZﬂUdc

where it is seen that a low value of Ud.c.' the d.c. conduc-
tivity, results in a low value of reflectivity.

The low electrical conductivity is a direct consequence
of the large density of states in the d-band. The transition
matrix elements that contribute to resistivity or the inverse
of the relaxation time TR contains a predominantly large
contribution from the s - d transitions, since the probabil-
ity of such a transition is multiplied by the large value of
the density of states of the final d states. In fact, the
interband transitions from s to d states alone account for
90% or more of the conductivity because of the large value

of the transition probability compared with the other modes

of transitions, s+ 8, d -» s, 4 - 4.
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For the particular case of the ferromagnetic nickel,
three states of electronic configuration are possible:
namely, 3d% 4s2, 33@° 4s!, and 3d'° states. The wave function
for each atom will be a superposition of the atomic wave-
functions corresponding to different electronic configurations.
If ¥2 . V1 and ¥, are the wavefunctions corresponding to the
three configuration states in the order listed above, the
wavefunction in an atom of the solid nickel will be in the

form,

Axya + MY + AgV,

where |Az2]|%, |a,|%, and |o,|® are constants representing
the fraction of occurrence of each of the three configur-
ations. The mean number of electrons in the s states is

then given by

ng = 2x |az]|% + 1x |a,)® VI-(1)

which is equal to 0.55 ~ 0.6 per atom. This is also

equal to the number of positive holes in the d-band. Another
consideration enters in the study of nickel on account of

the ferromagnetic properties. It is outside the scope of

the present work to discuss in detail the mechanism that
gives rise to the ferromagnetism. We are only interested

in the way the ferromagnetism enters in the optical and

infrared dispersion of metal. It is sufficient to note that,

Qrethur D Little, Inc.
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in the ferromagnetic nickel, the d states with one orientation
of the electron spin are filled, and the holes occur only for
those states of the d-band which correspond to the electron
spins oriented antiparallel to these filled states. The
electrons in the s states, however, occur in equal mixture

of the two spin states. The result of this is that there is

a residual spin component equal to the mean number of posi-
tive holes times the electron spin. Since the mean number

of holes per atom is exactly equal to the mean number of s

electrons, the residual spin per nickel atom at 0°K is
o= -
>~ ng = (0.55~ 0.60)—;

The residual spin or the spontaneous magnetization decreases
gradually as temperature is increased, and the metal turns
paramagnetic as temperature is increased further beyond the
Curie point.

The important consequence of this property that will
be of concern in our calculations is that not all of the
s-electrons are qualified to make transitions to the empty
d states: only those s-electrons with the spins antiparallel
to the residual spin of the d states will be able to make
transitions because of the Pauli exclusion principle. At
0°K, only % of the s-electrons are qualified, while, at a

temperature above the Curie point, practically all of the

e e
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s—electrons are qualified. This explains the large increase
in the observed resistivity of Ni above the Curie point
(Gerlach, 1932), since the damping contributed by the tran-
sitions is directly proportional to the number of 4 states
which are available for the transitions.

In short, the electrical properties and hence the op-
tical and infrared behavior of a ferromagnetic metal will
be a function of both the spontaneous magnetization ¥ and
temperature.

If we denote the spontaneous magnetization per gram
atom at any temperature T°K and at 0°K by Z(T) and o
respectively, the total number of s-electrons that are
qualified to make transitions to the empty d states may be

defined as

o = Ns X = s 1 +__Z_O:_Z_ Vi-(2)
s 2 2 Zo
1 <X <2

where n is the effective number of electrons in the s-band.
s

This shows immediately that resistivity of nickel has an

additional temperature dependence coming from £ besides the

usual temperature dependence coming from the lattice

vibrations. The explicit temperature dependence of the

QArethur D Little Inc.
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factor X is available from the phenomenological theory of

Weiss (1907) at high temperature and the quantum mechanical

theory of Heisenberg (1926) at low tempera tures A a

E
w Lemperacures. & led

-4
Q dede =

'-.l

theoretical and phenomenological discussion on ferromagnet-
ism and paramagnetism is offered by Van Vleck (1959). For
the purpose of our calculation that will follow, it is suf-
ficient to note that the phenomenological theory of Weiss

shows that (X-1) increases with increasing T like

e—constant/T

at high temperatures (viz., T > 400°K), and that the theory
of Heisenberg shows that (X-1) decreases like 73/2 3¢ low

temperatures as T is decreased. The observed and theoretical

values of X and £ are shown in Table VIII at diff{ascent.tempera-

tures for the ferromagnetic metals, Ni, Co, Fe and others.

In the following part of the present chapter, proba-
bility of the s —» d transitions will be calculated by a
method similar to what was adopted in Chapter IV for the
intraband transifions. All the other modes of transitions,
d »d, s s, and d - s will be neglected compared with the
s - d transitions.

The weight factor multiplying the s » d transition
probability is about 10 times the normal scattering probabil-
ity according to the evidence provided by the data on the

electronic specific heat (Wilson, 1936). This means that
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neglecting all modes of transitions other than the s-band
to d-band transition will introduce an error of about 10%
in the calculated resistivity. Besides, the results on the
intraband transitions are satisfactorily presented by the
calculations of Chapter IV.

Finally, it may be noted that the results that are
obtained in the present chapter should be applicable just
as well to interband transitions in other multivalent metals.
For nontransition multivalent metals, the interband tran-
sitions do not necessarily contribute more than the intra-
band transitions. Whatever the case may be, it is useful
to remember that the total damping coefficient, including
both the interband and intraband transitions, can be ob-

tained simply by adding the damping coefficient that is

IV for intraband transitions.

VI-B Calculation of Transition Probability

Because of the large effective mass of the d-electrons,
their contribution to conductivity will be small and can be
neglected compared with that due to the s-electrons. The
empty states in the d-band have a considerable effect in
that the s-electrons can be scattered not only into energy
levels in the s-band but also into the d-band. The large

value of the density of states in the final d states makes

Qrthur 0. Little, Inc.
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the s —»d transition probability much larger than the normal
s —» s transition probability. Further, the d - d and d - s
transition probabilities together are even smaller than the
s » s transition probability due to large values of the ef-
fective mass mg of d-electrons compared with that of s-
electrons, mg -

For this reason, the following calculations will in-
clude only the s —» d transitions. Contribution to the con-
ductivity coming from the s —d transitions alone explains
at least 90% of the total conductivity according to the
evidence obtained from the data on the electronic specific
heat (Wilson, 1936), 1938). In order to obtain the contri-
butions of the s @ s transition, results of Chapter IV may
be used without necessity of modification. Calculations of
the s » d transition probability involve essentially the
same theoretical approach as that adopted in Chapter IV.

The s —» d transition caused by a joint action of both the
electromagnetic field and the phonon field is again a second-
order effect, and may be calculated from the second-order
coefficient B(zi73? representing such a transition. There
are eight different processes for the s - d transitions,

four of which involve creation or annihilation of a photon

in the s-band, while the other four involve creation or anni-
hilation of a photon in the d-band. These eight processes

are illustrated schematically in the accompanying Feynmann
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diagrams where (A) shows the first four processes and (B)

shows the other four processes.

*g \\Ed) (k*g*p) tp 1 Y (etatp)
(s)4p (k * p) (4 (k * g)
™~ AN
k//(s) \ip. EA) \\*—*3
(4) (B)

In the diagrams, the solid, curved, and broken lines

represent the electron, photon, and phonon, respectively.
The coefficient B(Z)Zgi:gizp) may be calculated by

essentially the same method as that adopted in Chapter IV.

We thus obtain the following two equations corresponding

to (A) and (B):

s—d J—ﬁ sd
Ng efig
Py e 7 F g <2NMVE > ( JTing / ma ED
VI-(3)
(-1) 1-eiEt/H _ 1-eit 't/
E(ktp) - E(k) FHw g g

Qethur M. Zittle, Inr.
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: d
=1 |q] <———’ﬁ—2——>35 ( &;ﬁ >—5ﬁ-ss—- E- (kiq)
(B) 2N MVE J1n mgd =T

q

s—d s

VIi-(4)

y (-1) [.l_eigt/h 1_eig"t/h ]

E'(ktq) - E(K) * Eq € S

where the energy terms denoted as §, ¥, and § in various

resonance factors are given by

tE = {E'(h:tgip_) - E(k) ¥ o ¥ Ei}

{E' (ktgtp) - E(kip) I-Eg_} VI-(5)

v
-
i

g" = {E'(l_c_igig) - E'(&@)%nm}

The energy E'(k), with a prime, represents the energy of
a d-electron and E(k), without a prime, represents the
energy of a s-electron with momentum (%k):

K2 2
2mg k

E'()__(_) - EO -
VIi-(6)
12k 2

E(k) = 2mg

where Eg is the energy at the upper edge of the d-band.
The constant factor ng represents the strength of the

electron-phonon interaction which is generally of the same
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order of magnitude as the energy of an electron and has the
same meaning as g which was used in Chapter IV. As usual
taking ng and also g to be independent of the energy of
the electron which is interacting with a phonon is the
result of assuming that the electron-ion potential within
single unit-cell is reasonably flat, or equivalently that
the radius of the atomic core is much smaller than the size
of a single unit-cell. This assumption is satisfactory for
common applications such as in the present theory. The more
general electron-phonon interaction which also includes the
deformation of ions was discussed by Bardeen (1937). A
further discussion on this problem is offered in the 1958

edition of The Theory of Metals by Wilson.

As in Chapter IV, we shall ignore the quantities of

B, and take

VF
the order of -
\ - 7/

E(kfp) - E(k) * o =
VI-(7)

E'(ktgip) - E'(k*q) + e = ¥ fw

Then, of all the terms in Equations (3) and (4), only those
which have &€ in the resonance factors need be considered for
our calculations, since the others will contribute equally
to both the emission and absorption of a photon and will
thus cancel out when we calculate the net absorption by

substracting the emission term from the absorption term.

Qrethur . Little, Inc.
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By combining Equations (3) and (4), and using the relation

k<}+ Bs) . s
[ k ms (ktq) 1T N mg/ “mgd o
EED E@T I6  my E(EDE®T Eg| T¥o 1-(8)
E=o
we now have
B s—>d et < ( e gsd sd
(2 Gt = * |a| oy PMVE ¢ N1y, Fage?
VI-(9)

pelte/m
><§;é&} + > —

m
It may be noted that the value (nf > of a tran-

10

and such a term in Equation (9) can be neglected without

sition metal is usually very much smaller than unity (iS-—

any loss in the qualitative merit of our calculations. It
is retained in Equation (9), however, because this term
can be important when the results are applied to non-
transition multivalent metals for which the ratio of the
effective mass values is not necessarily small,

The probability for the process in which an elec-

tron in the s-band with momentum k, makes a transition to
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the d-state with momentum k, by a joint action of the
electromagnetic and phonon fields is obtained from Equation

(9) upon using the usual relation,

(r) _ Lim g 54 _
() (k13- ko) = (2) (ky >k o) l /T VI-(10)

where we have put k = k; and ko= (k,*g+tp), and r = (&),
s = (%) correspond to emission and absorptions of phonons

and photons, respectively. Thus, we obtain

(r) = e? n4E2 (r)
() (ks - ke) —d 12Vm? (R w )4 Gsq (@
VI-(11)
X (q (’Eﬁ") + kl <1+ ) 8(E2-E1+rEﬂ+sha>)
B2 = E'(k2) =Eo - —p— (ka)®
where we have taken
(E ky)(E 9 = ©
E k)2 _ E-9% _ 1 52
k2 q2 3

Arthur D Little Jur.
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and

(x) x 1 92gda (1 +Nq>
G4 (@) = : Vi-(12)
sd NPMEg_ Nq
The probability for an electron initially at the state of
energy E; in the s-band to make a transition to the final
state of enerqgy E; in the d-band is defined as
(r) _ (r) :
P(s) (Er)gy = 22 P(s) (ky » ko) [1-F(E3)] VI-(13)

ko

where the factor 2 is multiplied because two electrons
with opposite spins can occupy the state of same momentum
k» according to the Pauli exclusion principle, and F(E})
is the Fermi function evaluated at the final state Ej.
The summation over k, may be replaced by the sum-

mation over the phonon momentum g and hence by an integral

A
an)® ff (dg) .....

provided that we are careful in establishing the integral
limits in the integral over g since the density of states

at the final state now contain a factor
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JE, - E}

instead of JE . Occurrence of the factor . Eo-E instead
of JE in the density-of-states function leads to the lower

limit in the g-integral given by

Qin = lkq - kg | VIi-(14)

where kg and kg are the momenta corresponding to the high-

est occupied levels in the d- and s-bands, respectively,"

and are given by those at the Fermi level according to

the relations,

amg ¥
kg = 72 Er
vi-(15)
amy
Equation (13) is solved by removing the delta function
s
through integration over the angular variable cos#é = ;1;1>,
1

In obtaining Equation (11), we have averaged (E-gq)2 over

the azymuthal angle ¢ with k,; as the polar axis;

(E k1)

similarly,
was substituted for being its value that is obtained

later on integrating over (d>k;).

Qrethur D Little, Inc.
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We now have

/s N\ o So P
p, (g, = SLmdE Vd 1+ =) dq Gog
(s) l/6a ~ 4872 mg2 (i )4 ( mg j q daq Gg4 (q9)

Im

N2 [/ 2
X [1 + (ﬁ) /(1 + %—) ] [1-F(Ey - rEq - shw)]

VIi-(16)

where Gd is the weight factor which comes from the density
of states of the d-band, and is the same as that used by
Wilson (1938), and where G(r)(q) and Eq have been assumed
to be independent of the angular variables. As in Chapter
IV, we shall assume that most of the contributions to
Equation (16) come from those electrons which are in the
neighborhood of the Fermi level, so that k,; in the
numerator and kfzin [...] in Equation (16) may be replaced
by the Fermi momentum kg.

Now, we need to average Equation (16) over all the
initial occupied states in the s-band using the Fermi

function F(E,) for the s-band, and we have
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(r)
(r) i P(S) (El) sd F(El)
( () (S ")d)) I3 F(El)
ky

e? E® Dgg(ka ¢)? >< ) f <1+N(q)
= E2dE
32 n2mgkgEpurS (ho )4 mg 9779\ N(q)

1 +< >/<1+ > ((;;)(q) VI-(17)

where
2
D < nh 9sdWa >
sd =
NﬁM
j-oo
_ | & 1
BF (s (a) j 92 TeZ 12
-00
\»
7
a = B(rEq + stw)
Ke = fup |kd-ks|
- . R S
KGS = ﬁuL ks 7 B KT

Equation (17) involves essentially the same types of

QAethur . Little, Ine.
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integrals as Chapter IV except for the fact that the lower
limit of g-integral in Equation (17) is not necessarily
equal to zero.

The net amount of power absorbed per s-electron is

defined as

Wgg = Y hw{(P(S) (s =»d) - P((’:_)) (s - d))} VI-(19)

r=(%)

If there are ng number of s-electrons per unit volume that
are capable of making transitions to the d-band, the power
absorbed per unit volume is simply ﬁs times ﬁgd' As was
explained previously, ﬁs of a ferromagnetic metal is not
equal to the total effective number (ns) of s-electrons,
but is equal to -zgg—-times ng.

Upon combining Equation (17) with (19), and after
some necessary mathematical manipulations, we finally ob-
tain

(Power expenditure per unit volume)

sd

z

= 2 P
22 fge? 12 Npgd G _ga(m <1+E_8;2 <_L>3 2(0,T)
8

Vi-(20)
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where

M. _ B2 -
Z(w,T) = -sinhp l{J:s(u,a) Lo F L (T, + Ko, ]

K (eT -1)
vVIi-(21)
<s> {J (1,@) - (e au -1) 1-1[34(“30) +2k-4(p'aa) ]}‘H
)
; m=pgliw ; a=pBKE
where 35 and Rh are exactly the same as J, and K, defined
in Chapter IV except for the fact that we now have the
lower limit of these integrals different from zero: the
bars represent such a cut-off at the lower limit. Thus,
with the definition of the cut-off
oy = BK@y VI-(22)
we have
a
Jo(n,a) = Jf ylay/(e¥- e*) (et- e7Y)
M VI-(23)
o]
K (p,a) = f yldy/(e¥- e") (e"- e™¥) (e¥-1)
O
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and similarly, we define the functions 3:(&) and E:(a)

such that
(04
Jala) = :j;“ Jn(pa) = f yrdy/(e¥-1) (1-e™Y)
i VI-(24)
0
ko) = M g = [ yay/e¥-n?a-e™)
Oy

The dispersion properties that result from Equations
(20) and (21) will be obtained in the following part of
this chapter. It will be shown that the d.c. damping co-
efficient that is obtained from Equation (20) agrees
exactly with that which was obtained in the theory of the

d.c. conductivity by Wilson (1936, 1938).
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VI-C Damping Coefficient and Quantum Correction Factor

for Interband Transitions

Calculations of the damping coefficient Pep(p,a) and
Fg;(a) for the s -» d transitions are carried out in exactly
the same way as in Chapter IV, and therefore various argu-
ments pertaining to the particular method that is employed
in the present theory for computing these quantities shall
not be repeated.

Upon using Egquation (20) in the relation

E2 to - f—"
5~ o (K,Q) =g Wgq VI-(25)

we obtain the following expression for the frequency-

and temperature-dependent damping coefficient Pep(u.a):

2 -
3 Mg\ BN, ggq vg mg mg\2 (85\2
r (u:a)’- 2x G) P— Tn— 1+ _> _— —Z(l-l,a)
ep 2 8 r_a mSEFB.MKe s md 8 /o

VI-(26)

where (ﬁs/ns) is the ratio of the effective number of s~
electrons which are capable of making the s —» d transitions
over the total effective number of s-electrons, and for a

ferromagnetic metal, may be expressed generally in the

form,

QArthur D.Little, Ine.
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(:‘::) = 3 x(T)

= w1 Bt vI-(27)

The numerical values of X(T) are available in Table VI
and Table X for Ni, Fe, Co and others. For a paramag-

netic transition metal, n. is equal to ng and X(T) = 2.

S

The same is true for a ferromagnetic metal when tempera-

ture is well beyond the Curie temperature 8,. For a

ferromagnetic metal, the quantity of Equation (27) is most

1
important at very low temperatures at which it is nearly i
equal to (%). As a result of this, a ferromagnetic metal |
has a smaller resis tivity at low temperatures than a ‘
paramagnetic metal if both have the same values for other

parameters.

Just as in Chapter IV, the frequency- and temperature-

dependent function Z(p,a) of Equation (21) has the property,
Z(p'la) = z(-“l a) VI"(28)

and is independent of frequency in the limiting cases of
<< Q& and p >> &, being a slowly varying function of u

for all values of w and T except for the case of 1 K pu<KQ
It is easily shown that Z(u,2) acquires the following forms

in the two limiting cases;
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2
Z(u,00) =~ {3‘30((1) + <®T> 1 350(05)} Cn<<a, 1 VI-(29)
(2
Mg
T 3) ¢ 2 2
Fw.0) = [ 4% <%M-> 3t ?'f xxdx+<eT> 3
( ) e" -1 s (bkgg
%, o

(0]
4
X [é— aégl- <_%M_>5§+ zf —’—;x——_d—’l‘]ﬂ s u>>a VI-(30)
%

both of which are independent of u and hence of ®, where

J;ﬁa) and'jg(a) are given by Equation (24). Upon using

Equation (29) in (26), the d.c. damping coefficient re°(a)

P
is found as

r° () = on> ( fig > 12 Np g84dq (3{9) (1 + _?E)a(_@_s_)? 1
ep Z \"s J2mgE3 MK@ s M/ \8 / «a

2
X { 3,2 + <9T8> L 3° (oz)} VI-(31)

m
d
<1+ s

This agrees exactly with that calculated by Wilson

m
(1938) when we take m§;>to be much smaller than unity and

equate (ﬁs/ns) to unity. For most of transition metals, mg

QArthur A Little, Inr.
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is actually much smaller than mg and ignoring the terms
m

containing the factor (ﬁi) is well justified: e.g., for

the triad of transition metals, Ni, Pt, and Pd, we have

™
(%—) ~ 0(—%(-)> and for Nb, <E<§i-> ~ 0(10°-2). Thus, it is suf-

ficient to take Z(u,0) and Pep(a) in the form,

Mo, " , -

2(n,Q) = g—s_;nﬂ [33(“"1)" P‘E:T;%)l—: (32(u,a)+2ﬁg(u,a)> J vI-(32)
0 ox® (G BZ N, 853 %4 (ma) /O 1 - _

r‘ep(a) = % <H§ p 8s o €s_ 1 Jzo(a) VI-(33)

2mgEp” MK 8
o (04
bae (10 {i- () }r2of Lo ] vI-(34)
a]{ ex-l

1o
According,the results of Chapter IV, that part of the damp-

ing which originates in the intraband s - s transitions may

be written in the form

2 2
o> A% N, gss !

r 2 (a)
2 mgEp” M K @ o

ep S-S 2

I ©)

VI-(35)

——— o
Ris o5 s (a)
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Then, for a comparison of the contributions by the

s - d and s 2 s transitions, we have the ratio

(Ot) ls—»d ><mdwd>< >2 J3 @) VI-(36)
e 3 ( ) I

s—S J (Ot)

where we have put gsd gs:' Since we know that ks is of

the same order of magnitude as qo, we have esa=e in order

of magnitude. At room temperature, the ratio is mostly

md\7

due to ( - d> while, at very low temperatures, the ratio
s

can take on a very large value. For nickel, the data on

. . ‘mawg
the electronic specific heat show that <—a§— ~ 10,
By dividing Equation (21) by (29) and ignoring the
m
terms containing (ﬁ% we find the following as the b-

factor for transition metals;

_ elsiohp [ (-12 (
bep(u a) = " -g(a) J3(1,0) -p (©-1) Ja(m, a)+2Kz(u,Ot)>J VIi-(37)

This satisfies the correspondence requirement,

lim = -
©o0 bep(u,a) 1 Vi-(38)

Qrthur D Little Ine.
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In the near infrared limit of u >> a, we have

VI-(39)

VI-D Dispersion Properties of Transition Metals

The results of the preceding chapter allow us to write

down the optical conductivity o(u,a) in the form,

nge?
o(p,a) = ;S Ps/éwa-krsa) VI-(40)

where T'(p,2) is the sum of the electron-phonon damping co-
efficient Iép(u,a) which is given by Equation (26), and the
damping terms due to the electron-electron collisions,

M
Equation (40) includes only the contribution of the s-

I;e(‘”a)” and that due to the impurity scattering, ro.

electrons; the d-electron contributions as well as the intra-
band transitions are neglected. When contributions of both
s- and d-electrons need be considered, Equation (40) may

be replaced by the more general form,
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2
o(e, ) = <n;: T Kw +1“2)+ /@ +T > VIi-(41)

where the electron-phonon contributions to both r‘s and I‘d
include the intraband transitions as well as s 2 d tran-
sitions. 1In general, it is quite sufficient to take o(u,Q)
in the form of Equation (40) and ignore the d-electron con-
tributions as well as the intraband transitions in s- and
d-bands. Therefore, it must henceforth be remembered that

whenever we speak of I‘ep(u,a) of a transition metal, we

mean the one due to the s - d transitions.

The over-all b~-factor for the total damping coefficient

I'(k,a) is again defined as

ro, Iy
b(k,0) = (rff bep (100 + 285 b (4,0) + 8

where bee( M), Peoe' and T° were discussed in Chapter V,

M
and

(o] (o] o (¢}
T = (I‘ep(oz) + I‘ee(oz) + I‘M>

Arthur D ALittle, Inc,
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The optical dielectric constant €(M,*) is obtained
from Equation (40) by using the Kramers-Kronig relation.
The relevant mathematical arguments which were applied in
solving the Kramers-Kronig relation in Chapter V are just
as applicable to transition metals, and thus will not be
repeated here.

With the definition of the temperature-dependent

quantity P(N) such that

f) =b (1 B.) = R, b (ifis £ ,X)

VI-(43)
the optical dielectric constant is given by
CO?_
1- &( ,q)] - o_
[ lu 02 + (Pl—.o>2
o <Hs e2> VI-(44)
<4 - M

Thus, all the relations of Chapter V should be applicable to
transition metals when we replace bep andlﬁep of Chapter IV
by those given by (37) and (43), respectively.

The difference between the results of Chapter IV on
non-transition metals and the results of the present chapter
on transition metals are exhibited most strongly at low
temperatures and in the near infrared. Some of these proper-

ties will be discussed.
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VI-E Some Low-Temperature and Near Infrared Propertles of

Transition Metals:

For the discussion on low-temperature and near infrared
properties of transition metals and comparison of these
properties with the properties of non-transition metals,

it is convenient to define a constant Rzg given by

qm’ )r/]er 9524 Wy ( My \('\ L Mms \2{ @s)a
= oz mKE AT Ve
VI-(45)

Then, the electron-phonon damping coefficlent that was

obtained in (26) can be written as

sl /T,
[ (ped= R (zs

) l Z (1, X)

0\3

- sd. Ne 4
= R <n5> o

where bep is that given by (37)

— VI-(16)
T bep(po

First, let us investigate the low-temperature behavior

of fﬂ?q). According to (L46), we have

ol RY (—ﬁ—) A O

ng/ «° VI-(47)

Qrthur D Little Inc.
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In the 1limit, > | , thls becomes

- = Gy 2

o sd/ N e 3 - A]

[Zm =R (S) - [O(M+30(M 'G’O(M+Q_;
I \Ms/ 3 -

@

Nslo '@
VI-(48)
sd. /®s>3 <’)7ls> ~Om
- .2 \@ ns oe dM > O
VI-(49)
where
- L
(«ns> _ 2 : ferromagnetlc metal
Mg | : paramagnetic metal
and (g% is of the order of unlty since ks is in general

of the same order as the Debye's cut-off value %, . For most
of transition metals, Xy 1s not equal to zero, and hence the
equation (49) is to be used. For these metals, the electron-
phonon damping coefficient vanishes like ~ é-ur

when T 1s decreased to the absolute zero. The negatilve
exponential factor was also obtalned by Wilson (1938). On

the other hand, the damping contributed by the electron-electron

collisions and the impurity scattering was shown in the previous

chapter to be of the form,

(i + 1) = (Ree (—Z‘;—)2 ) VI (50)
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where Ree and hﬂ are nearly independent of T, and Ree

is in general much smaller than Re .
Therefore, for metals with Ay different from zero,
the over-all d.c. damping coefficient at very low temperatures
retains only that part which is given by (50), despite the
fact that the electron-phonon part alone constitutes the most
of lﬁo(u) at higher temperatures. This explains the 'TZ——
dependence of resistivity of some transition metals which

has been observed by various experimenters. We summarize

the above discussion by writing down Tﬂo as

o e X
F’(d) (R (C)) LY ) ’ dM>O>
VI-(51)

The same was found to be true even for a noble metal
due to the rapid decrease, ~ T° o f;;(OO with
decrease in temperature, although not as rapid as in (1L9).

Whether there 1s a transition metal with Ky=0
is a question that is yet to be answered. For such a metal,
the s —— d transitions at the Fermi level can take place
without a finite momentum transfer implying that phonons with
the average energy of the order of ~ (KT) are capable of
stimulatling the s ——=d traﬁsitions even at a very low

temperature. The following discussion based on a rather

qualitative description of the propertles of the s- and d-

QArethur D Little, Inc.
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bands suggests that, out of all transition metals and likewilse
of all multivalent metals for which interband transitions

are lmportant, there can exist a metal with Oy =0 if

the electrons in the outer band (s- band) are neither more
nor less in number than what 1s required to completely close
the empty states of the inner band (d- band) that is involved
in the interband transitions. Three transition metals which
do satlsfy such a condition are the triad, Ni’ Pt’ and Pd'
For nickel, the three possible configurations are (3d8 hsz),
(3d9 usl), and (3c11O uso). For platinum, they are the con-
figurations, (5d8 682), (5d9 6sl), and (5d10630). For
palladium, they are the configurations, (Lpd9 Ssl) and

(udlo 530). In all three metals, the s-electrons plus the

d-electrons amount to 10 electrons which can exactly close

the d-band. Further, 1t is known that all three metals have an

approximately 0.6 electrons per atom in the s-band and the same
number of holes in the d-band. That these metals can have
Ay = and hence
k dtfrlcs
may be shown by computing the total number of empty states
in the d-band and the total number of s-electrons from the
density-of-states functlons of the two bands. At very low

temperature, the Fermi function {F(E) is nearly equal to

unlty, and we have
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E. Eo
ﬂs=/f;<e)ou—: ; ﬂi=ff¢<e)dE
0 o VI-(52)
where Wﬁ; is the number of empty states in the d-band
and the density-of-states functions 9s(E> and
S;(E) are glven by

o= (e

e = (Y /e mE

VI-(53)
Using these in (52), we obtain
— | 2 Ms = 371’
= EsE TR "Ff =&/
2my ¥ ks /. VI-(5k4)
(o] -
ng = 31r1 (Eor EF)) a/3m

Therefore, we find that kd=ks for those metals for which n.

1s ldentically equal to M .
Although the above result may not lead us to a definite
conclusion, due to the use of the simplified forms of 95
§A_ s 1t does permit us to suggest that, 1f there is any
metal which has Xu=0O
N

, the triad of transitlion metals

g2 Pt’ and Pd’ are the most likely ones. In fact, according

Qethur D Little, Jur.
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to the observations by MacDonald and Mendelssohn (1950),
the low-temperature resistivity of platinum has been
interpreted as ha#ing a'F?- dépendence on temperature, which,
nay be attributed to lee (&) . On the other hand,
if platinum has Xy=0 so that equation (48) is
appllicable, the low-temperature resistivity should have both
T*- anda T — dependence on temperature coming from
]:i and E;o , respectively. The total damping co-
efficlent will then be given by
o e RY(ZT+REY +
Pe ®
VI-(55)
where the first term is not necessarily much smaller than

the rest unless T 1s very near the absolute zero:

e.g. at (%): l/zo , Wwe have
o -3

=~ Ree-1C°

and, since Re 1s generally larger than Ree by a factor of

1
10 or more, ’:; 1s not unimportant even at a temperature
as low as 10 "~ ZO?K.

It 1s not difficult to see that, even if the low-
temperature resistivity exhibits the _r§—- term, a clear

3 S
distinction between T — . T — terms 1s not an easy task
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at low temperatures, and 1t 1s thus very possible that this
term has been confused with the T — term in the past
measurements.

Let us investigate the low temperature properties
of the quantum-corrected damping coefficient ]:}(I*;OQ
in the near infrared, i.e. P> & » |\ . The low temperature
properties of TZP(fLAx) in the spectral ranges, U « X
will be left to the future chapter dealing with the absorption
at very low temperatures.

We saw in the previous chapters that, unlike the d.c.
damping coefficient E;:(OQ , the quantum-corrected damping
coefficient maintains a relatively large value 1n the near
infrared even at OOK. It will be shown that a similar quality
is also found in transition metals, and that this is true for
all transition metals regardless of whether &, vanishes or
not provided that ™n is of a mucp smaller order of magnitude

than & .

At very low temperatures, the b- factor for the near

infrared spectrum reduces to

~ Y ) 3 _ [ oY
bef(luioo ~ 3z J—'.:(Oo X [I ( X )]
VI-(55)

Aethur M. Little Inc,
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When we use this in (46), we obtain

-~

S (B 4R[1- (2]

de.

R
a1
=

s e

L
6

sd. .
~ g RT L PM VI-(56)

which is independent of both w and T, where we have taken

®, << ® Thus, unlike E:(Ot) , the negative ex-

ponential factor e i cancels out, and the electron-phonon

scattering makes a large contribution even at very low
temperatures. This implies further that the contributions

to the damping by the electron-electron collislons and
impurity scattering will be important at very low temperatures
in the near infrared only if they are important at higher

temperatures. When these two processes need be consldered,

we use the formula,

ﬁa(ﬂla)= ]_':’Ee', ANCOERM

@

w

TXORY + R L, + I

ee %
X D> |

VI-(57)
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—

while S, () , which appears in &€ (K, &) , becomes
.io (O() = &e é;_ -+ r;'\o

In (57), fio has a weak  T”-dependence while in (58),

SLo(%) has a relatively strong 1 -dependence on temperature,
since, in general, ReP > Ree 2 me . As a
specific example, let us investigate the near infrared absorp-
tivity at very low temperature. According to Chapter V, the

bulk absorptivity AB is given by

ms ~ -~
~ JL
Ana"'/’n“nseaZ o Gor

VI-(59)
where
~ =~ ~ w?
fLo Ga- = ﬂo -+ -ﬂ-ee_>
1ot (@
Tee = 149 (_)
se VI-(60)

and Lo is given by (57). In general, Ryy >> R,,, and
when this 1s true, Jlee 1ls also much larger than ®_ SO that
/?:0@; 2 ‘é,‘X(O) RSd" for a reasonably pure sample. Thus

the total near infrared absorptivity A of a transition metal

Qrthur D Little, Inr.
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is

d.

A~

4J’~.

X

.~

&7
[\} (4]

rE T

VI-(61)
where the second term 1s the absorption due to the anomalous
skin effect and \ g_-(ld = lO-L)C .  The numerical
value of de can be determined from the room temperature
value of I:;(d) since the complete temperature-dependence
is specified in (47), and E;:(d) is easily found from the
optical data and also from d.c. electric measurements.

The temperature-dependence characteristics that have
been discussed here are to be used in various dispersion
formulae that are given in Chapter V in applying the present
theory to transition metals. It must be kept in mind that
some transition metals exhibit resonances at relatively long
wavelengths compared with noble metals, and when thils happens
the resonance contribution must be substracted out of the
dispersion curves, by use of the Kramers-Kronlg relation or
by other means, before the theory is applied. A method of
substracting the contribution of the bound electrons to the
infrared dispersion was illustrated in Chapter III where we
used the Kramers-Kronlg relation. When the res&nance bar.d is
narrow and clearly dlstingulshable, separation of the free-electron

part of dispersion becomes a trivial matter.




Table V

(o]
Numerical Values of J5(o()

| 1 =T To (o)

| * @

' 0 12013
0.05 1242
0.076923 123,14
0.1 116.38
0.125 101.48
0.16667 70.873
0.2 50. 263
0.25 29.488
0.33333 12.771
0.5 3.2293
0.66667 1,1199
0.83333 0.147907
1 0.23662
1.25 0.098845
1.52 0.0451

Qethur D Little, Inc.



Table VI

Temperature-dependence of Damping Coeffilcient

in Gold (®=175°K )

T m/Eers) | Pm /M°(273°)
(GK ) calculated observed
273 1 1
87.43 0. 2645 0. 2551
78.86 0.2276 0.2187
57.8 0.1356 0.131L
20.4 0. 0060k 0.0058
18.9 0.00346 0.0035
1.3 0.00117 0.00137
12.1 0.00051 0.00048
11.1 0.00033 0.00030
.2 3x 1070 3 x 1076

Qethur M. 3Little, Inc.



Table VII

-G , - 16 _ .~ Pptlcal Data Used to
Oox1O fgu | T X0 ook o (Meaws) 6T culate Theoretical
Metals o Value of ov
(Present (Electrical| 8, (Cale.) o
Theory) Meas. )
Al 1l 15(Meas. by B.& C.) |1.1 [Beattie{ Conn (1955)
18 22(Meas. by Golovashkin et al
Golovashkin et al) 1.2 (1960)
Ny “+.8 IL.6(Meas. by B.§C.) |1.0 | BeattiefConn (1955)
G, 3.5 3.5 (I.C.T., 1936) |1.0 | schulz (1957)
Hg 0.9 0.9 (I.C.T., 1936) {1.0 | Schulz (1957)
T, 1.6 1.6L (H.6B.) 1.0 | Hass@& Bradford
(1957)
S, 5 7.8 (Bulk) 1.6 | Hodgson (1955)
(Am. Inst. Phys. Hb.
1957)
*
Z, L 15 (Bulk) 3.8 | Hodgson (1955)
(Am. Inst. Phys. Hb,
1957)
Cy 12 13.5 (Meas. by S.5P.)| 1.1 | Schkliarevskii &
Padalka (1959)

% The spectral range in which the optical data are available was too
close to the resonance region, and hence this value is not
completely reliable.

By "Bulk" is meant that Os values quoted are obtained for bulk

samples while the optical data were taken with thin layers or
mirrors.

Jethur D 4Little, Ine.



Table VIII

c, N

4 =-%ftheory)

e o' 1
If © (52—0) Lxm| () [+xm (Z) |exm
0 1 0.500 1 0.500 1 0.500
0.1 0.996 0.502 0.996* | 0.502 1.000 0,500
0.2 0.99 0.505 0.99 0.505 1.000 0.500
0.3 0.975 0.512 0.98 0.510 0.997 | 0.501
0.L 0.95 0.525 0.96 0.520 0.983 0.508
0.5 0.93 0.535 0.9 0.530 0.958 0.521
0.6 0.90 0.550 0.90 0.550 0.907 0.546
0.7 0.85 0.575 0.83 0.585 0.829 0.585
0.8 0.77 0.615 0.73 0.635 0.710 0.645
0.85 0.70 0.650 0.66 0.670 0.630 0.685
C.9 0.61 C.695 0.56 0.720 0.525 0.737
0.95 0.46 0.770 0.40 0.800 0.380 0.810
1.00 0 1.000 0 1.000 0 1.000

% For Ni only

Computed from the Am. Inst.

Phys. Hdb.

Qrethur 4. 4Little, Inc.




Table IX

Theoretical Values of Microscopic Parameters

1

. /] (e} : - ‘ 5] _%: o 4
N (_f:l?) ‘ (2 ; E oox|0"’; lee EX10 | Y X |O\ w‘i,s
Metals | y ,52* xio™ 5 I e (i X135
i P ! IO ‘ 8 -\
(o (sec) (esu) ? (cec™) Qm/se&z / deg? (sec) LSQ(_‘ )
c, .2 0.533 ‘1.2 | 20 3.1 R.3 U483 1.8 12
f i !
! ‘

N, (I) 1.2 0.625 1.2 | 4.8 50 .8 L2y 0.9 6.2

i

Ni(II)§ 0.8 1.1 1.2 | 2.0 73 0.7 W2 0.6 5.1

1

. : 1
Al 7.1 1.2 1.2 | 18 b2 |2.7 T8 0.9 15
i | 2 1 '
Al o | 6.8 0.1yl (5.9l iy 0.3 |2 73y 7 15
(78 K) ' : ; :
P, | 5.7 10.6 1.1 | L4 1.7 [1.3 1692 0.1 | 1
i _ ! ,
i ; | : -
I, |81 17.1 1.1 | 1.2 1.7 1.7 k9 0.06 | 16
| ‘ I |
T, 2.2 352 1.3 | 1.6 i-== |-== |-== 0.3 | 8.
| f —
H,  7.65 2l [1.00| 0.94 1.2 [1.55 1620 0.05 | 16
— : |
G, - 14.6 10.7 1.07| 3.5 [0.28|1.88 | 860 iO.l 22
z 1.26 009 | eom | 16 leme | omo | eem 1.1 6.4
: i
S, 6.16 3.0 cem | 8 femm | mme | e }0.3 1l
|

Cys Ny (I): Beattied Conn (1955)
Ni(II) : Shkliarevskii § Padalka (1959)

All metals for room temperature except for this
7= Sommerfeld constant for electronic specific heat
For other references on optical data, refer to Table II and VII.

QArthur D Little, Ine.



Table X

e _l[”zo-z
= =
Elements Curile > Z = Z
Point °© o o )
o 293 K 293 K
@. (°C) (293 X) | (293
Fo 770 221.9 218.0 0.509
Co 1131 162.5 161 0.505
Ny 358 57.50 5lt. 39 0.527
Gg 16 253.5 0 1.000
Dy ~168 | —e-e- 0 1.00(0)

Qrethur D.Little, Inr.
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Chapter VII

Theory Applied to Optical Data

VII-A Calculation of Microscopic Parameters

The microscopic parameters that define the optical

dispersion properties may be calculated from the best-fit
theoretical curves of either the optical constants (n,k) or
(05€). 1In general, it is much simpler to use the data on
(0;€) rather than (n,k) since the general formulae for the
former are less complicated than the latter. If the optical
data are available in the spectral‘range,_ﬂ;.,ﬁt;<'<w1 K (u;,
which, for many metals, corresponds to ly_é;)\<ilOH, it is
convenient to use the best-fit theoretical curves of (n,k).
in this part of the spectrum, the theoretical formula for %
is exactly the same as that given by the classical Drude

theory while the formula for n can differ substantially from

the classical formula; namely,

o (8- &)

VIIi-(1)

o
IR

) CODQOG
2 3 T

Qrthur D Little Inc.
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W, -(.Lo We ]
-+
w* Qe

e (R by + 00+ 17°)

It is seen that k describes a straight line when it is plotted
against A while n describes a straight line when it is plotted
against XL . The critical frequency W, is ‘obtained from (L),
and when this is used iA (2), the numerical values of gio

andflee follow immediately. The value of the electron-electron

(o} ]
‘damping coefficient r;e is obtained from_jlee when we use the

relation, 2 '
ﬁé.) ° * oY
fLee= (2.77' ,:e = (27,. Rec
B=1/KT
VII-3
f= 1/ K®
where Ree is a constant which is independent of W and T. The

values of f’eop and hence Rep can be determined from (1) and (2)
only when we neglect /x°compared with fg; and f:;. This

procedure is valid for metals which are substantially free of
impurities, provided that the temperature is not too low. The

method of determining the "Restwiderstand" term, /;o
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from the low-temperature optical data will be explained in a

later part of this chapter.

Once the values of @Wo, Rép, andeee are determined, we
can predict the values of (n,k) and other dispersion quantities
at any other temperature and frequency.

It is important to note that, in fitting (1) to the
corresponding experimental curve, the extrapolated straight
line must pass through the origin at A= O , and that, when
(2) is plotted against )% , the non-zero value of n defined by
the intersection of the straight line at /\=C> is entirely due
to the Umklapp processes which give rise to a non-zero contribution
of the electron-electron collisions.

The remarkable qualities of the formulae (1) and (2) are
clearly demonstrated in Figure 8 to 11 for gold and copper, and
in Figures 15 to 18 for the multivalent aluminum.

For many metals, it is not easy to identify the portion of
the spectrum where the formulae (1) and (2) are applicable)ama_ikn
general formulae of chapter V need be used. In this case, it
is more convenient to obtain the best-fit theoretical curves of

(@h 6:) than of (n,k) using the formulae;

[1-€]s= wf/ w* + /Tj) VII-(4)

Avthur D Little Inc.
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le ) —
where (Lo and JSLo are independent of Q.

The best-fit theoretical curves of o

C and

[1- €]
are shown in Figure 7, Figure 12-14, and Figures 19-24
for ten diffenent metals including the noble, multivalent,
and transition metals. 1In particular, the multivalent metal,
aluminum, is examined at two different temperatures, 78° K.
and 295O K.

Table IX shows the numerical values of various micro-
scopic parameters that are calculated from Figure 7—24.
These parameters are sufficient to enable us to calculate the
d.c. electric properties and the dispersion properties at
different spectral and temperature ranges.

The d.c. electrical conductivity O is calculated from

the formulae,

05 = == L
4T e
|
0_ o —0 o
re= 2+ 15+ I} | |
VII—(S) |
theoretical and measured values of O7 are shown in Table

(=]

e i
where /z may be ignored at ordinary temperature. The 1
VII for a variety of metals. For most of the metals that are l

examined, the theoretically calculated values agree well with

the electrically measured values. Note, in particular, that |
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the values for Pdf and /QI have been improved considerably from
the o0ld values of Table I. In Table VII, some of the measured
values of I are not obtained from the samples on which the
optical data are available. For an accurate comparison between
the calculated and measured values of O3 , both the optical and
electrical measurements must be made on the same sample, since, as
was explained in Chapter III, the optical and electric properties
vary depending on the manner in which the metallic surface is
prepared. For instance, most of the available optical data are
obtained from vacuum evaporated surfaces while the handbook values
of U are for bulk samples. Beattie and Conn (1955) obtained
the optical data for several metals, each with several different
surface preparations. The variation in the values of the electrical
and optical properties among differently prepared metal surfaces

was guite substantial.

~. <

VII-B Calculation of Absorptivity

With the help of the microscopic parameters that are given

in Table IX, the absorptivity is calculated from the formula,
Aom 2 a,6) - (&Y. (L ey,
e ™ 5, LG - 3 (@) * 52 % P> T

VII-(6)

QArthur D Little, Inc.



-176-

where /\5 is the absorptivity due to the diffuse surface
scattering (Dingle, 1953). The skin absorption is important when

the mean free path given by

L= T
F 'R VII-(7)
is much larger than the skin depth é; which was given
in Chapter III, where 7; , unlike the d.c. relaxation time
° , is now given b
7; g Y
I | o ~ .
T - ?) + /;X(Ae/g—l)
R R VII-(8)

According to the original theory of the anomalous skin effect, the
d.c. relaxation time 7;0 was used in Equation (7) so that, at
low temperatures, ,Z can be substantially larger than <5§ due
to the rapid decrease of [70 with decrease in temperature.
According to the present theory, however, 72 does not

increase so fast as might have been expected from the theory of

o~
electric conduction, since a rapid increase of bqp
@)5 !
according to ~ (ﬁ? J?_ completely counteracts the rapid
decrease of Izo , until Z; reaches the constant low-temperature

value,
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This is to be compared with

——/‘_\\5:‘-10 . % °
=~ Tx0X
R
[=]
which results when E; is used in p

As the result of this, the absorption due
skin effects is not so significant in the
as was suggested in the original theories
Sondheimer (1948) and Dingle (1953). For
and also for multivalent metals for which

transitions are predominant, the relation

= (&)

VII-9

VII-(10)
lace of r1°
to the anomalous
present theory
of Reuter and
transition metals
inter-band

(9) is replaced by

VII-(11)

o]
The constant R can be obtained from the known values of F;F

ep
upon using the relation,

T Ry & T

L7
o

for nontransition metals, and the relation

VII-(12)

Qethur 0. %Little, Inc,
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sd.
o0 ] o
E} = 'QeP N ‘Is(§0
o VII-(13)
/ o} o}
for transition metals, where the functions J5 and J3

are available in the appendix in calculable forms: the

numerical values of :&o(u) are computed in Table V and VI.
Since R is usually L I} times as large as f’°

ep 10 €p
at room temperature, ’E for both transition and non-

transition metals at very low temperatures and in the near

infrared is given by

T~ (o~ 16°) x 7;\0(30o°l<) VII-(14)

which implies that the mean free path 1 increases by a

factor of /O ~ /0O when T is lowered from room

temperature to the absolute zero. This is in marked contrast

to the low-temperature electrical properties and also to the
~existing theories of optical dispersion.

The absorptivity values that are computed from (6) are presented
in Figure 28-31 and are compared with the experimental curves
for the liquid metals, Hg and Ga, and for the transition metals,
Pt, Ti, and Ir. The contriﬁutions by the Umklapp processes

are indicated in Figures 29-31l. One glance at these curves

is sufficient to show that the transition metals with
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predominantly interband transitions exhibit a markedly greater
contributions of the Umklapp processes than other metals.
Table II shows the theoretical values of the low~temperature
(4.20K) and near infrared (I~,2/¢) absorptivity of eleven
different metals. The theoretical values for Cu and Ag are
in agreement with the experimental values of Biondi (1956)
within ~~ 2%. Unfortunately, the experimental values are as
yet unavailable on other metals, ané no further comparison is
possible. The relative importance of the bulk absorption as
compared with the skin absorption is represented by computing
the per cent value of ‘%ﬁ) =6 - %E'J

It is seen that for all the metals that are studied, the bulk
absorption ranges from 20% for Ag to nearly 100% of the total
absorption. In general, the bulk absorption is relatively
more pronounced in multivalent and transition metals than in
noble metals. It is hardly necessary to mention that, according
to the classical theory, there should be almost no bulk con-
tribution to the low-temperature absorption, and that the
remarkable features demonstrated in Table II are entirely

the consequence of the quantum correction factor,bep ., of the
pPresent theory.

VII-(C) cCalculations of Dispersion Properties at Different

Temperatures

We have already demonstrated how the microscopic

parameters that are computed from the room temperature optical

Arthur D Little, Iuc.
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data can be used to compute absorptivity at very low temperatures.
We may likewise calculate and hence predict the values of any
dispersion property at different temperatures when the values
of the fundamental microscopic parameters are available from
the optical data at a particular temperature.
Before we proceed with numerical applications, we need
to establish the validity of the T-dependence that is
formulated in the present theory. The temperature-dependence
of C:(d) is well established and has been popularly used
in the past. Therefore, we need to concern ourselves only with
the T—dependencé‘of the electron-phonon damping coefficient
E;Yq} and the quantum-factor, bep(<x)}i ). We explained
previously that the T-dependence of f;:(q) of the present
theory is entirely consistent with the T-dependence of the
well-known Gruneisen formula and also with that which is de-
rived in Wilson's theory of electric conduction in metals, and
that Gruneisen's formula is in excellent agreement with the
observed heat capacity data: e.g. see Figure 2- (a) and -(b).
Although this enables us to conclude that our formula for
IZ;(“) is valid, we have yet to establish the validity
of the T-dependence of bep( X, B ) or equivalently of
be, ().
For this purpose, we shall use the optical data on
aluminum which are obtained at two widely separated temperatures,

?8°K and 295°K, by Golovashkinetal (1960)., We saw previously
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that the theoretical curves for n,k, 0 and (1-€) at the two
temperatures agree well with the corresponding experimental
curves, and that the calculated value of (] at 2950K also
agrees with the electrically measured value. Table IX shows
further that the values of the temperature-independent
parameters which are calculated from the two separate data
agree with each other within ~ 5%. Therefore, we only need
to show that the value of .E?(78°K) which is obtained from
the data at 78°K by using bep(780K)=(5.Q4~) reproduces
successfully the value of f;;(zqz;°K) which is obtained
independently from the optical data at 2950K using’B;p(ZQBOK)

= 1.22. From the optical data, we have

E}:(78°K>= P4l x o7 secT!

© R -\
EFCZ"]5°K>= .12 x O sec. VII-(15)

each of which has been obtained independently with (:)=3750K.
On the other hand, Table V gives us

Je (295°K)=0.5

Js (78°K)= 50

so that

3§(zﬂ5°K)’>
Je (78°K)
= |17 x H3!4 sec’ VII-(16)

o o o 295 8
L1 0= T x (T8 )

QArthur D Little, Inc.
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14

Comparing this with the wvalue, 1.12x10 sec.-1 of (15), we
find that the two values agree within 5%. Since use of
bep&x) was essential in obtaining the values of (15) from the
optical data, the good agreement between (15) and (16)
automatically establishes the validity of the temperature-
dependence of bep'

Now that we have verified experimentally the temperature-
dependence of the dispersion formulae, we are ready fo predict
various dispersion properties at any arbitrary temperature.

As an illustration, we shall calculate the near infrared absorp-
tivity and the optical constants (n,k) of aluminum at very
low temperatures ( f;lOOK), 3750K, 470°K, and 570°K in addition
to the values at 78°K and 2950K which are already available
from the optical data of Golovashkin etal (1960).
In the spectral range defined by
o,éiﬁ_ f: A fé 3.5 @~

we use the formula,

e 2 55
A5= COO-QOG

o

E_E)_D[Rgf,_ol(;aj(oob(w)ﬂ-f?«_ + ji ]

ee VII-(17)
In the same spectral range, tbe formula for the index of
refraction is
ne L@ Cally
= 2 oo d VII-(18)
= 5 (&) A
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where (17) is to be sued for Ay, and &, is nearly independent
of temperature and is =~ <%?) .
Upon using the numerical values of various parameters
given in Table IX and V, we obtain
Rie= 7.0 x 0% sec
gef = 7.7 X IOH' sec!
Lee= .34 X 10 !

and thus (17) becomes

-2 N
10 o7 7 3.5 X \O
A~ 0.0103) — J (b (x) + :
The values of A=(AB+AS) are plotted at the temperatures,
o}
T £ 10%k, 78°K, 295°K, 375%°K, 470°K, and 570°K in Figures 25 ~_

26. The values of n are plotted in Figure 27. The absorptivity

. | \

describes a straight line when plotted against \ W/

» s 0] . . Z
while n describes a straight line as a function of X . 1In

obtaining the values of A, we have used AS=0.004 as the skin
absorptivity.

It should be noted that if the Umklapp processes were
completely absent, the second term of (19) would vanish and
Ap would be independent of A . The curves of Figure 25 are
then replaced by a family of horizontal lines, while the
straight lines of Figure 27 for n should all pass through the
origin.

Finally, it may be said that calculations similar to what

QArthur M. Little, Iuc.
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has been done on aluminum can be made on any other metal for
which optical data are available. This applies to all the
metals that have been investigated in the present chapter
except for solid bismuth. The optical data?gismuth show
extremely anomalous behavior, as shown by the curves of O~
and (1-€) in Figure 32. Whether the anomaly is due to
oxides or due to some peculiar properties of the lattice is
yet to be determined. While both the present and all the
existing theories completely fail to explain the peculiar
dispersion properties of solid bismuth that are observed by
Markov and Khaikin (1960), Table III shows that the liquid

bismuth is explained even by the classical Drude theory

(Kent, 1919), and hence by the present theory also.
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VII-(D) Determination of Impurity Contributions

Unlike the d.c. electrical properties, the optical

dispersion properties are affected very little by the presence

of a small amount of impurities (i.e.,~i O ' or less in
concentration) except at the far infrared and low temperatures.

It is well known that the impurity contributions give rise to

the finite residual resistance important at very low temperatures.
The pronounced effect of the impurity scattering at very low
temperature is attributed to the fact that the damping co-
efficients I;FKOO and [:: vanish with ~ T {or m-_ré

for transition metals) and N-sz respectively, when | is
decreased to the neighborhood of the absolute zero, while ﬁr
being independent of temperature, maintains its constant value
even at OOK.

In the present theory, however, the damping coefficients

E? and I;S appear multiplied by the respective quantum
correction factors bep(w”T) and bee(w) which, at very low
temperatures and in the near infrared, increase exactly as

fast as the rate at which E; and l:; decrease with decrease
in T. As a result, the over-all damping coefficient T1(0%'r)
manages to maintain a constant but relatively large value even
at OOK, For this reason, it will be senseless to attempt to
determine the value of l;o from a near infrared optical data

unless the concentration of impurities is sufficiently large as

[«} o
to make f; comparable with Ree or Rep. It was shown

Arthur D.Little, Inc,
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in chapter V that, unlike ¢~ , (1-€) depends on the W-

independent damping ~flo such that

w?
- € =
! o+ (Y

VII-(20)
at very low temperatures. Unless the wavelength is very
long, however, this is not going to improve the situation
since in most of the infrared and near infrared regions of
spectrum, (20) is replaced by = <%>2 .

Therefore, it is quite clear that any attempt to determine

E:> can be made only when the optical data are available in

the far infrared region, '« P#Ku L . Ir this case,
the formula (20) is useful provided that W is not much larger
than [}O .

At very low temperatures ( | i, 10°K) and in the far
infrared, the optical quantity which is measured with relative
ease is the absorptivity A or the reflectivity R=(1-A). The
value of Er can then be determined from the formulae that
¢re given in Chapter'VIII. For many metals, the values of

P ' fzo and W, are available from the room temperature

ec

data with an accuracy of 10% or less, so that if AB is measured
up to 21 10%, the value of {:o can be determined up to ﬁi
10%. The optical estimation of T; can be useful when a

direct electrical measurement is difficult.

When the value of rx) is available, the impurity
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concentration NM can be estimated from the complete expression for

T;c ( Gurzhi, 1959 ) or qualitatively from

N~ (% *.\;451 <l:g>3

which gives us the order-of-magnitude estimation, where ( %;qh )

VII-(21)

is the mean free path of the electron-impurity collisions.

Qrthur 0. Little Inc.
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Chapter VIII

Bulk Absorption at Very Low Temperatures

VIII-(A) Normal Metals at Very Low Temperatures:

he preceding chapters that the
bulk absorptivity Ay of a normal metal (i.e., non-super-
conducting) retains a finite non-zero value even at OOK

in the spectral range given by M > & > | , and vanishes
at OOK, for a pure metal in the limit @ > 0. It was also
shown that the bulk absorptivity at OOK, which we shall call
the "zero-point bulk absorptivity", in the near infrared is
independent of @ aside from the Umklapp term.

Specifically, we obtained the following formulae for

the bulk absorptivity in the high frequency part of the infrared;

- 4
pom B G, [ - 3 () + (T ]

P w> L (H>x)

VIII-(1)
and
2 ~ ~ ~
Aem 5 Gt w >R, (> )
VIII-(2)
where n L (
~° )= m° = ) ° °
(fl.a) eF(lDeF(O() ee T rIM
Gos(i+ Uy e
";:O + Nwz ) VIII-(3)
S, e




-189-

and (G_ — | ) and (G, -\

the Umklapp processes are present.

) can differ from zero only when

It is the purpose of the present work to compute the

absorptivity AB-at very low temperatures in the spectral ranges

defined by

() XS

(i) « P, P

VIII-(4)

o)
both of which are in the far infrared. At TA0 K, the

condition (i) applies for practically all frequency values

of infrared,

b

and the calculated value of A, would then

represent the far infrared zero-point bulk absorptivity.

T d R 1 1
It was explained in Cha

Hagen-Rubens formula

Y
%\ =2/

B %

VIII-(5)

applies in the far infrared when the temperature is not too

low.
-_—2

W n,, I,

2

We recall that the formula (5) was obtained by taking

At very low temperatures, however, ) may not be

Qrthur 0. %Little, Ine,



-190-

2 —
necessarily smaller than ch, and JZO in the far infrared,

since.ﬁi, , being independent of (), decreases rapidly to
}:: with decrease in T and Jli likewise may have a small
value if the quantum correction factor bep(VWO‘) does not
counteract sufficiently the rapid decrease of f::(q) with
decrease in T.

Therefore, it is quite clearly the pPrimary task
of the present work to investigate the W-dependence of bep
( M, ) in the spectral ranges of (4) and also to specify
the order of magnitude of nf relative to the values of
@ in these spectral ranges. We shall first investigate the
®-dependence of bep(H'O( ) for [ > | and T 2= 0°K. we
shall, for the sake of generality, calculate it for both M >
and r&<<x .

Upon using various formulae for Jn( fL,cX ) and

Kn( M, ) in the results of Chapters IV, V, and VI, we
obtain the following expressions for bep(/i,d ) for both

transition and nontransition metals;

o>

Y « °
bep (o) = B[l - —?—,-F]/Js(“)

VIII-(6)
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t—u(cx:

' i*?///,T°
bef,cr‘-,‘)() = Zg Jg (00

VIII-(7)
for nontransition metals, and
B>
< r I °
by (iD= - [1- + ?] J5 (e
VIII-(8)
P < &«
b K /300
MERIES 24/ 5 %
VIII-(9)

for transition metals, where, for the sake of convenience, we have

taken O to be zero.

Thus, the electron-phonon damping coefficient of non-

transition metals is given by

K®
EP(H,O‘)z ‘&“”(' -z 'ﬁ—w) P> VIII-(10)
Rep ( A0 ¥
= Lo ( K ) Dpex

VIII-(11)

QArthur D 4Little Iuc.
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For transition metals with cXEeECD , we have

o R KON -

,eP(FWOQ: Z <| - % m) . "‘L>°( VIII-(12)
_R® (fay .
= 24 K® Lop<s VIII-(13)

It must be remembered that, for a ferromagnetic
metal, the equations (12) and (13) must be multiplied by 1/2
on the R.H.S. as the correction for the residual magnetization.

The formulae (8), (9), (12) and (13) will also apply to those

transition metals which have ol »> O provided that g
is sufficiently smaller than (. In this case, the formulae

) NE sd.
(9) and (13) are multiplied by (| ~ —% ) so that [;P PO
has non-zero values for 4w > K® only.

For both types of metals, the electron-electron

damping coefficient is given by

Hw \2

i ~ L
i‘c<}")°()~ 41‘[“7‘ Ree TK—CTD—

VIIi-(14)




~-193-

In order to write down the formulae for the bulk
2
absorptivity, we need to compare the magnitudes of @ with
2, A
S, ) J2¢ : i.e., to find out which of the equations (1)
and (5) is applicable.
o}
At T~ 10 K, /-& = | corresponds to the values
12 -1

of @ which is of the order of ~~ 10 sec. We are therefore

interested in the spectral range given by

12 K® i3 4 =\
1O é w L T = |0 ~ IO sec.
sd
It was shown in preceding chapters that Rep (and Rep)/ R o

and r;b (for a "pure" metal) have typical values of the
order of lO'BNIOM, 10%~10"°, and /4\' |0° , respectively.
The Debye temperature is generally of the order of several
hundred K corresponding to a @ of 10"~ 10" se;]..

L2
Therefore, for W~ ;0 sec and ®= |006°K ,

we have

The same is then true for ﬂo since it contains no W-

dependence and

JZ,&( M° + f;:_) K W 10'% sec!

This implies that the equation (1) is to be used for evaluating

Arthur D.Little, Inc,
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‘o . 12 -1
the absorptivity in the spectral range of a);z, 10'“ Sec.
o
and T < 10 K.
Thus we have the following formulae for the bulk

absorptivity of the noble metals and the transition metals,

respectively;

oy o

e ® Fe
AB“%O{%f<"%%> imfe(ie) * "

VIII-(15)
V-( X
~ 2 Reg _l__ AW 2 o
Ag ~ 5{ ( Tan\ke/ T m}
VIII-(16)
for nontransition metals, and
f“>°“
X(O) R 32 K@ | ﬁ;)_z o
AL~ -50{ (' * %0 )+ g Relo) E«}
VIII-(17)
p <
sd 3
Ae * 51 Z 24 \Ko! T am R“°<<® I

VIII-(18)
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for transition metals, where X(0)= 1 for ferromagnetic metals
and = 2 for paramagnetic metals.

Although Ree is generally smaller than Rep by a
large factor, contributions of the electron-electron
collisions to (15)~~(18) can be substantially large compared
with the electron-phonon term because of the smaller power of

%) in the electron-electron term. This is even more
true if, in (17) and (18), O is very large. The first terms
inside { } of (17) and (18) must be equated to zero for

fw < K@E when @E is not zero so that the only W-dependence
appears in the Umklapp term.

Now let us investigate the case of P— ,é | and
KT 12 -
W ~ (jﬁ—) 107 sed!

This spectral range is of interest when one wishes to compare
the absorption of a normal metal since the superconducting
energy gap is generally of the order of several 0K in temperature
and thus W < 0% se&'. For w ~ 10" sec', we will in
general have (%) < 0™ % for ® 2 100°K . This implies
that we will have r;‘Q as the most dominant term in both

Jl-,, and ﬁ.o when the metal is not completely free of
impurities. However, since we saw previously that rr\;\O ﬁ ‘Om SeC—-

for most of the so called "pure" metal samples, we still have

(%), (3 <+

QArthur D %Little, Iuc,
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so that the equation (1) is again applicable.
Therefore, we shall henceforth consider (1) as the
general formula for bulk absorptivity which is applicable in

the far infrared at very low temperatures regardless of

whether )»‘- >> | or fb = \ . unless a metal has an
exceptionally large value of F:A" . When the sample has
a large F:,, , }V lOlz sec.-.') say , the Hagen~-Rubens formula

(5) should be used with ['{«) equated to I_'Mo .

For « » 1 and R < |, we have the following
formulae for J (K, « ) and Kn( K, X );

~ 2 o > nin-) ° cea

el —

K"(/w)x = [[,u K2 (0 + /43&(’%7—'1 K;:_Z(N)+-~--‘ﬂ VIII-(19)

et

where the first terms inside I]::H are the largest terms.

These formulae are to be used in evaluating bep(}l_,o( ),

o 5
=& sichfll True)- (e'-1) ]]
bef,()‘;“)— m [ 50" ) /'Lcez]w_o [J‘;.'-ZK‘J

VIII-(20)

for nontransition metals, and




|
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It inh = KNt r = - ;
QC}L,«)_-. f—_slu_ﬂ_ [[ Js(}‘*"‘)" ;a—(e%t%[ T () +2 K(p, )] ll

VIII-(21)

for transition metals. Then, it is a trivial matter to write
down the bulk absorptivity since we only need to replace bep
of (16)~ (18) by (20) and (21) in the electron-phonon term.
Finally, it may be reminded that the values of the
Sd
parameters R_, R , and R which are required for a numerical
ep ee ep
estimation of (16)~ (18) are to be obtained from the optical
data taken at higher temperatures and alternatively from the

d.c. electrical data. The same applies to the other parameters.

Qrthur D Little, Inc.
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VIII-(B) Bulk Absorption by Superconductors:

Compared with what are available on normal metals, very
little experimental data are available on the optical and infra-
red absorption in superconductors. Some of the latest
measurements are those of Biondi and Garfunkel (1959) and
Richards and Tinkham ( 1960 ). These measurements are designed
to determine the superconducting energy gap from the shape of
the observed absorption curves. Specifically, these experiments
include measuring the absorption of the external electro-
magnetic wave in a superconductor relative to that in a normal
metal, and the results are embodied in the curves showing the

ratio,

VIII-(22)
where AS and An are the absorptivities, at a given frequency

and temperature, of the superconducting and normal metal,
respectively. The normal state of metal is accomplished by
applying a magnetic field parallel to the surface which is

strong enough to reduce the gap to zero. The results are
equivalently expressed in terms of the power absorbed, Ps

and Pn’ instead of the absorptivities AS and An' In the plot

of 7

N vs. &, for instance, the energy gap is determined

by locating the frequency ﬁ% where [, starts to decrease

abruptly: that is, the head of the absorption tail.
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The superconductor differs from the normal state in
that the density-of-states function JO(E;)does not show the

continuous distribution around the Fermi level in the form,

CC(E) = constant X /E

but possesses discontinuities exhibiting a forbidden region
on both sides of the Fermi level.

In the theory of Bardeen, Cooper, and Schrieffer (1957),
a certain minimum energy is required to produce an excitation
from the ground state. This minimum excitation energy, or the
energy gap, is a central result of the BCS theory. Existence
of the predicted energy gap has been fully verified, and is

by now a popularly acceptéd fact. According to the theory of

BCS, the density-ocf-states function ,fs’(E) cf a superconductor
is given by
£(E)= 80 | :zi>e
S N [Z - € ]z
=0 iz €
VIII-(23)

where fZ((D) is the density-of-states function of a normal

metal evaluated at the Fermi level, € is (1/2) of the energy

Qrthur . Little, Inc.
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gap Eg which is a function of temperature, and
Z:(E -EF>

It is seen that QS(E> increases very sharply at the

gap edges, E=(Egx € ). The energy gap Eg(T) achieves its
maximum value Eg(O) at T = 0°K and decreases to zero as T is
increased to Tc” the superconducting transition temperature.

In the region where EL E - € , all the electrons occur
paired and this part of the band is called the paired band.

On the other hand, the electrons in the region where E}EF+€
are unpaired, and this part of the band is usually referred

to as the unpaired band or the "normal" conduction band which
bears no difference from the conduction band of a normal metal.
However, at a temperature T below T_. most of the electrons

are paired, and very few are available in the unpaired band.
Therefore, most of the absorption will be due to these paired
electrons. When the paired electrons make transitions to the
unpaired band, the energy absorbed must be at least as much as
that which is required to overcome the gap Eg: otherwise, no
transition of this type is possible, since electrons are for-
bidden in the gap. The BCS density-of-states function f%(fE)
is schematically illustrated in Pigure 35. The typical temper-

ature dependence of Eg is shown in Figure 36. For W—‘7.Tc '
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the metal is completely normal, and absorptivity is fully
described by the results obtained in VIII- (A). The curve
showing the dependence of Eg on the magnetic field H bears
a close resemblance to that of Figure 36 when we replace T
by H and T& by a certain critical field strength Hc. Thus,
when H > Hc, the metal is completely normal even if T <
Tc' and the optical properties are satisfactorily described
by the results obtained in VIII- (A) and also in the pre-
ceding chapters.

The latest theory of optical dispersion in super-
conductors is due to Mattis and Bordeen (1958), who calculate
the frequency dependence of the complex conductivity OE
of superconductor on the basis of the BCS theory. Specifically,

they calculate the ratios,

(W(w,f) o,;) / (02(0),1’) o3 >

being the high frequency conductivity of normal metal and

R\, 2

the photon propagation momentum that is involved, and where

07 and q; are defined as

O = 07 + |

A

VIII-(24)

Arthur 0. Little, Inc.
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Based on these results, Richards and Tinkham calculate the

quantity
o= As | Rs
SN T A Rv
VIII-(25)
from the relations,
4
Zs ) 3
Zu VIII-(26)

Zy=(1+ iy3 )R
R,ﬁ&(zn)

Rs= Re (Zs) VIII-(27)

where Zs and Zn are the surface impedance of superconducting
and normal metals, and Rs and Rn are the respective surface
resistance values.

These relations are applicable only in the extreme
anomalous limit whére all the contributions to the absorption
and resistance come from the surface effects in which the
electrons absorb photons and collide with the surface of the
metal to conserve energy and momentum. Thus, they do not include
the possible contributions of the bulk where electrons might

absorb»photons and emit phonons to conserve energy and momentum.
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The bulk contribution of this kind has been found to be
significant in normal metals and was fully discussed
theoretically in VIII- (A) and preceding chapters. That
the bulk effects might also be significant in a superconductor
on account of the large electron-phonon interactions that are
present was suggested by Richards and Tinkham (1960) following
the similar suggestion by Holstein (1952) for a normal metal.
Richards and Tinkham compared the experimental
absorption-edge curves for superconducting lead and tin with
the curve predicted by the theory of Mattis and Bardeen. The
comparison shows that although they agree qualitatively as far
as the shape of the absorption-edge is concerned, the theoretical
values are much greater than the measured Qalues. Further, the
theoretical curve tails off much slower than the observed edge.
This is shown in Figure 38 where an is plotted against the
ratio (QV&%) for W greater thanczg= (Eg/d?). At the present,
no positive explanations are available on the discrepancy
between the theoretical and experimental absorption edges shown
in Figure 38. Since the theoretical curve of Mattis and Bardeen
is obtained by considering the anomalous skin effects only, it
might perhaps be worthwhile to follow the suggestion of Richards
and Tinkham and compute the bulk contributions to the
absorptivity. If the bulk contribution is significant at all,

it could very well effect in reducing the theoretical values of

Qrethur D Little, Inc.
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Mattis and Bardeen, although it is not certain as to whether
the magnitude of the bulk absorption is of the right order as
to bridge the gap between the theory and experiment.

For & < a)g, Schrieffer (1959) derived the formula

' c(oE.En- H[FE)- FE)]

o) [(er-ed (e -e) ]z

'S

IR

dE,

VIII-28
from the BCS theory assuming a symmetric electron-phonon inter-
action coefficients. This formula applies in the spectral range

of %C%(CU { Wy

and differs from zero only for - > 0°K .

Richards and Tinkham (1960) checked this formula in the above

. spectral range and found good agreement with the experimental
absorption data. The formula (28) is plotted in Figure 37. It
is shown that YgN rises slowly with increase in @ and is smaller
than unity only by a small fraction. Experimental curves of

"'S'N show that the rise of E'N with increase in @ is pronounced
in some superconductors such as the transition metals vanadium
and indium while others have a nearly flat "N for W< wg‘

At any rate, it is certain that the ey curves do have their
peaks, which are very likely to be discontinuous because of the
discontinuity of §} at the gap edges, at @W= @, and tails off

S
rapidly as @ is increased further beyond wg




-205~

In what follows, we shall do our calculations for the
bulk absorptivity only for Ql>¢Ug and at T= 0°K. The theoretical
method is essentially the same as in the preceding chapters, and
the difference will be in that we now have to use the new
density-of-states function j;(E)that is offered by the BCS
theory.

The density-of-states function §% and the Fermi
function F(E) define the number of electrons per unit volume by

the relation,

n°=MN. + Ny
- + o0
= 2[ g dz <+ ‘(dz fS(Z)F(Z)]
.z =(E -~ EF> VIII-(29)

where n_ is the number of paired electrons per unit volume
and n, is the number of unpaired electrons per unit volume.

o .
At O K, we have n, = 0 and the second integral vanishes.

Probability per unit time and per unit energy range that

an electron initially at the state E, makes a transition to the

1
final states in the range E2-9(E2+dE2) is given by

AP '
ag, o PEE) Qe[ - F(E)] |

Arthur D.Little, Inc.
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and hence

~(E) o< gd E, 95(_52.,)[‘ - F(Ez)] P(E,~> E.)

VIII-(30)
Similarly, the average of P (El) over all the initial states

is given by

<P) x< f dE, dE, €(E) (&) FE)[ - F(E)] P(RE)

VIII-(31)
where it is implicit that the surface integrals have already
taken care of the necessary requirements of conservation of
energy and momentum.
Upon comparing (30) and (31) with the corresponding
equations for a normél metal in Chapter IV, it is readily
shown that the expression for the power expenditure W_ of

(r)

a superconductor will involve the function F(s) in the form,

+ o0
) | ! ex
F7(4)=+ x) € (x+a
VIII-(32)
where

a:P(rE++ s%w>
(+)

We have only F(_y to consider and other three vanish at
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o
T=0 K. Further, the integrand

K
e {

l+e™ I t+e

is different from zero only for those values of & which

satisfies the inequality,

O < x < - VIII-(33)

The possible values of x are further restricted due to the

presence of the energy gap: namely, the condition expressed

by (23),

|lx+a|, [z| > pE
VIII-(34)

= 2 ol
allldiie

N r-\ o [
for the product, SglXJ/ Ss{X+) | not to v

Combination of (33) and (34) immediately yields the inequality

condition,

Pe {xL-(are)f
2€ £ —-a VIII-(35)

The integral (32) thus reduces to the form,

-(at€)

y+a
(D= | dy Ell 2|z__L
A [(31_ eN((y+a)y - € )_I’-

Jethur D Little, Ine.
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VIII-(36)
ror HAw { K® , we obtain the following expression
for the power expenditure per unit volume per unit time;
We o 3T 9" Np E” %
— 4 WMKO®)E w?
(o-Eg) (k- 4-©
€4d§ dx i,’CMX‘i— Q—%w'
- A
I S (P )
VIII-(37)

The absorptivity AS is then readily obtained as

A ~ m* R m")s(hr')
s~ /an e¢ 60 \K® SN
- VIII-(38)
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where

(‘ﬁw— Eg) (’ﬁw- $- G)

[+ & -4w |
(I~qu)35'gls §*d8 fax - =i 2 T
G ® ¢ {{x‘- e j[(x+3-Fw) - e‘]}z

VIII-(39)

where R is exactly the same as Rep if we take

N_+MNy = m_

e

Mo

: i.e., all conduction electrons are in the paired band at

T=0°K

VIII-(40)

The formula (39) is good only when the Umklapp processes

and impurity scattering can be ignored in the normal metal.

Otherwise, we must use the more general formula,

=~

I=Ten =
SN |+ |5 Ree(KC)>.,’_éo_gL(“1 )

(Ghw- Eg) (¥@- é"e)
& |z || x+&-F]

4
@) 5 T e e
0 €

VIII-(41)
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The integrals of (33) and (35) are difficult to evaluate

functions. :
However, a simple, and perhaps oversimplified,
approximation can be obtained upon noting that the first
factor in the integrand represents the density of states of
the initial states and the second factor represents that of

o)
the final states, and that, at T= O K, most transitions oY

involve only those initial states which lie at the lower edge
of the gap: i.e.,

E.x E. - € X €

/
This means that most of the contribution to integral (37)
comes from the lower limit of the integral, although the
apparent form of the formula tends to show that the integrand
has singularity at the upper limit as well as at the lower
limit. The singularity at the upper limit has to do with the
fact that most of the electrons reaching the unpaired band

as the result of transitions are likely to crowd at the upper
edge of the gap, where the density-of-states function is

large. We thus have

Q]
F-:_) (ﬂ/)@(’(\w—E@— e) >+ €
VIII-(42)

QAvthur D.Little, Inc.
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where it is implicit that the integral in % is to include only

(+)
those values which make ﬁq >T€ . After some necessary
mathematical steps, we find that oy of (39) reduces to the

simple formula,

o (10 2D (1 vz 2

Che < KO

VIII-(43)
The expressions for AS and g, of a transition metal
may be obtained in the same manner. In particular, for those
transition metals which have Xz=0 , the formula for I

which is equivalent to (43) is readily obtained as

e~ (=225 (- (5))

VIII-(44)
The formulae (43) and (44), unfortunately, fail to
improve the agreement with the experimental values of Figure 38.
For a more rigorous comparison, however, we have to obtain a
numerical solution to the complete iniegral of (39). This would
certainly improve the situation since the assumption that was
adopted in obtaining the crude solutions (43) and (44), was to

restrict absorptive transitions to only those pairs lying at

Aethur D %Little, I,
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the edge of the gap, while the complete integral takes into
consideration the transitions of any electrons in the paired

thus increasing the value of ( l-—V;N ).
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APPENDIX I

Calculation of Jn(a)

a

J:(oz) = f x" dx/(e*-1) (1-e™¥)

o

I-A: a1

a

J‘;(a) ~ f x""2 ax [1 -

o

- 1 Pt

n-1

I-B: a>> 1

® n-1
0, N _ X ax
Jn (Q) ~ 0 f ex 1

o]

e.g.,

Jo() = 124.4

I-C:

o) * ex xn dx
Jn(a) = f % =z

(e” - 1)®

o

7

12

General calculation

7 2
12 X + ...
1 n+1
n+1 o +

« 5 6m)
=1

I-(1)

I-(2)

I-(3)

I-(4)

QArthur D.%ittle, Inc.
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The integral on the right-hand side can be written

(04 ) ©
N n=-1 - n -3 -3 ~ n-1 -
X e _ X e X e ~ dx
=X dX - -X dx - -X
L-e 1-e 1 -e
o o o

The definite integral can be evaluated by the series,

xn-l o X
—_—— dx
f 1 - e X

eago

(n-1)! 21 <m'“>>

24.8861 ; n =5

The indefinite integral can also be written as a series,

(o] n o<
-] - + -
E e e (n-1): n-r r mo\t
. = dx = — o
1 - e X (n-1) !
(04 r=i m=j

Substitute Equations

(5), (6) and (7) into Equation (4):

Y ()

m=1

0 A
o ¢ \ - n. n-r
J’n(a) =[ e z. <mn> ) z (n-r) ! @
m=1 r=1

fe-)]

I-(5)

I-(6)

I-(7)

I-(8)
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I-D:  Jg(a)

From Equation (8) we compute the numerical values of

J:(a). For small values of a:

1

a* J;’(a) = B, + B,02 + Boa* + B;06 + B,a® + B0 + ..., I-(9)
B, = 0.25000000
By = - .01388889
B = 0.00052083 1-(10)
Bs = = .,00001653
By = 0.00000096
B, = ~- .00000003

This series is good to 8 places for g = 1, and its
accuracy diminishes thereafter.

For somewhat larger values of a, let

= L
u=—a
Then
—é%— Jg(OD = Dy + Dyu® + Dou? + Dzu® + ... + Dgul® I-(11)

Arethur D Little, Ine,
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Do = 0.250000
D, = - ,125000
D, = 0.042188
D = - .012054

Dy = 0.003164

I-(12)
Dg = - .000792
Dg = 0.000193
D; = - .000046
Dg = 0.00001l1
Dg = - .000003

This series is good for & < 27 and diverges for
a > 27. and should not be used for values of @ much larger

than 3 so that the last terms contribute significantly.
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APPENDIX 1II

Calculation of b (o)
ep

In the limit of fiw >> K8, the quantum correction factor

bep(p,a) becomes

+ -?5—<35+

Ut]|—=

bep(a) = [

1 >/,g(a)] I1-(1)
e -1

With the help of Appendix I, we evaluate %ep(a)
numerically for o < 2=,

For small values of q,

2 4 8
gep(a) =_;_+ Ao + A102 + Ax0% + A305 + AL II-(2)
Bo + B0 + Bo0* + B30 + B4t® 48,00

where
Ao = 0.20000000
A, = 0.01666667
A, = - ,00027778 IT-(3)
Az = 0.00000661
A, = - .00000017

and the B-series are the same as in Eguation I-(9).

The A series are the gquantity,

-—%—(%+ e;_1>=m>:%a2“‘ II-(4)

gl

QArthur D.Little, Inre.
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For somewhat larger values of o, let

u=4a
Then
& (@) = 1 N Co + Cyu2 + Cou% + C3ué + ... + Cgulé I1-(5)
ep 5 Do + Dyu® + Dou* + Dxu® + ... + Doul®
: < 2n
[}
am Q@ 1 -
Xcmu -—5<%+ > > ITI-(6)
e -1
m=0

Co = 0.200000

Cy = 0.150000

Ca = - .022500

Cz = 0.004821
I1I-(7)

Cse =. - .001085

C, = 0.000247

Ce = =~ ,0000560

Cr = 0.000013

Cs = =~ .000003

and the D-series are the same as in Equation I-(1l).
Similarly, it can be evaluated for & > 2x when the
formulate of Appendix I are used.

Fora £ 17, for instance, we obtain

~ _ 1 s
Pep () = (5 + 1244.31) I1-(8)
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Appendix III

Integrals Jn(u,a) and Kn(u,Ol)

III-A: General expression for Jn(u,Ol)

(0
J G0 = f X dx/(eX - eu> (ep‘ - e'x> :n>0
o

IIT-(1)
We will use the relation,
1 e X [ 1 1 ]
’ = X_1 = T _xtep_
<?x . 1> (ex-leu_ > (ea B > ex-1 e 1
o (01
f xm dx xm+l 1 1 Jo @
o e*- 1 m +1 X1 m+  Tml
where
m+1 o m> o0
Then, for n > 0,
n m+1
J (1,Q) = — Z 1 <n> pom Q)
n’ e?Ha,y mtr \M Mg
m=0
m+L m+l
R T Y i Pt (-:on} o e
OtH Ly eH-
o n-mtl_ 0 mt2 n+1 o
+ 3, @)+ (-2) I @) -(-1) {1+( 1) }Jmﬂ(u)ﬂ

Aethur D Little Inc,
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III-B: General expression for Kn(H.a)

a
K_(1,0) = f %" dx/(ex - e“> <epL - e"‘) (ex - 1> III-(3)
[+ !

We split the three factors as follows:

e

1

gl el
<e2u_ 1> oXH.1 oXH]

1 = e ® [ 1 - 1 ]
» + +
(%x_ > (éxzu_ 1> <F—u- 1> e*-1 a1
1 =[1 _1]
eX(eX-1) e*-1 e®

and use the relation,

(o4 (04
m m+1
X X 1 1 o
= Q
ﬂ{‘ eX-1 dx m+1 eX-1 R Jm+1( )
o]
Then,
(04

=K - 38 + 2
Kn(H,OD - e “/‘ T [ 1 + e o _(+ e ]
(eH-1) (eM-1) eXtio] e¥ ko1 eX -1
o

O a-p

= e L f (x-w)" d £, f xH)" dx e
(e2H-1) (eM-1) * e¥-1 eX-1
M -H
@ N
B x dx e
-1+ X dxe ”
( e )f R }
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From this, we have

- n
K_(1,0) = L Z L <n> un'm{e“(-l)n-m [_@iﬁﬂi_
n (e2H-1) (eM-1) . m+l \m PRogy M |
=0
n 1
- pm + @)™ - (- _.Ein:l_
et-1 | e | e H-1

- @) | (0T M g L + C,m(a-u,.u)]

o

+ e (™™ [J° (o) - J;ﬂ(u)] + [J,:ﬂ(a-u)

m+1l
M n+1
mH .0 (14+e") o
+(-1) Jm+1(“)]} T+l @
51+eu2 o ) 1
- - III-(4
) @ - et gn(oz,O)Jj (4)
where
a
Qn(é,b) = f xn e_x dx
b N
a
n
= -e X an“r n(n-1) ... (n-r+l) III-(5)
r=0 b

Qethur D Little, Ince.
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III-C: Jn(u.a) and Kn(uqa) at low temperature.

We shall evaluate these integrals for two cases,

(1] a>u>1 (B > hw >> KT)
[i1] a>p , HRO

For the other limiting case of b >> &, formula (1) of Appendix

II is applicable.

From Equations III-(2) and III-( ), we obtain the

following simplified expressions;

n m n

III-(6)
m=0
Fali®) = “[‘ () )
8=1

III-(7)

n' n+m n ad

3 s () T )]
m=o s=1
a>>pp>> 1
[ii] J (@,n) = —e'az,,-—_'i— {u J:(°°) + p 2 ;:1 3:_2(‘”)

III-(8)

4 s Ao l(n;:)(n- ) LARORTY “(“'1);;~(“"5l I @)+ }
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n

- 1 Mn+1.{ :_1:m+1 <n> n

Iﬂ,(a,l-’-) (eap-l) (l_e-p_) eu—]_ z — m [1""('1) ]}
=0

. hi it

m=0

n-m - /n _ _ o 1
+ %—1— (m+1) ! <m> [e™+ (-1)™™) <X —mR T 1>
s=1

-n! (1 + e-p') <1 + Z :ﬁ—):ﬂ III-(9)
s=1

a >>u, H>0

N

where Jg(w) is given by formula (3) of Appendix I. Formulae

(6), (7),

(8) and (9) are sufficient to enable us to cal-

culate bep(u,a) at very low temperatures even in the very

far infrared.

Aethur D.Yittle, Ine.
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Appendix IV

On the Question of Existence of
Cos®0 £ 1 at the Singularity &=0

The theoretical calculations of the transition proba-

bility rested on the assumption that there exists a cos36

which satisfies the condition,

and hence

5(¢) =1

¢ = E(k+rg) - E(k) - rE(g) - stim=0

and

cosé = (k-a/k q)

The existence of such a cos6 was asserted by Wilson

(1936) for the processes which do not involve an external

electromagnetic field.

We shall show that such a cos6 exists also in the

presence of the electromagnetic field.

From Equation (1), we have

cos® =

[ o

m* ©
1 kq

m*u
*( ‘nkL>‘r

J.
2k

IV-(1)

IV-(2)

IV-(3)
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In comparing the order of magnitude of the three terms
on the R.H.S. of Equation (3), we shall use the typical

values,
m* ~ 10727 (g)
u. ~ 10° (cm/sec)
v, ~ 10® (cm/sec)

= -1 ae
a, <huL> ) for 8 ~ 102 °K

The first term is rewritten as

@) @) ) e

and the second term as

m*u u >
= (—L ) _ L) . -3 -
B = <ﬁk ) <VF ~ 10 1V-(5)

At ordinary and higher temperatures, the phonons with

d = g, are active, and hence we have
AS (ax)107% for AR lp

In this case, the third term is the only important
one, and any q equal to or smaller than (ZkF) gives us

cos®9 g 1 satisfying the condition (1). Thus, we have

Avthur 0. ZLittle, Incr.



2
< : >
cos“6< 1 qo > 2kF
do \2
2 .

cose<%<kF> Poay < 2kg
In general, the second of the above two applies when
9, > 2kF, the integral over q must be cut off at q=2kF.

The scattering angle ¢ is defined as
— —!
(k . /k k'>
—! - - -
<k + rq + sp>

— -
~ (k + rq:)

cos ¢

W
i

Then, ¢ is related to 6 by the relation

X
(k2+ a2 + 2r cose> cos¢ = k (l + r —g— cose>

Then, upon writing

q, = (21{)({-1{ V°>§
kKp = (2x) <_Z. xv°>i

we easily see that the second condition of Equation (6)

~
n

corresponds to

¢ < 78.1

IV-(6)

IV-(7)

IV-(8)

IV-(9)
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in agreement with the usual value of 79° for elastic scatter-~

ing (k'= k), and that the first condition of Equation (6)

corresponds to O < ¢ < x, thus scatterings are possible for

all angles.

At low temperatures, the phonons with

! u g~ KT

IV-(10)

are active, and it is easily seen in Equation (3) that the

first term (e.m.-phonon term) can be the most important

one. For such a case, we have

Aﬂ,-—cl[.— for A 21l

and hence,

1
cos®e % - 3 WA I

IV-(11)

so that for’ﬂfz 1°K, it is assured that a cos?2g < 1 exists.

QArthur D Little, Inc.
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